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1 Asymptotic analysis
Consider a function f : N → R.

Definition 1.1. For every m ∈ N, infn≥m f(n) is the largest r ∈ [−∞,∞] such that r ≤ f(n) for every n ≥ m.

Definition 1.2. For every m ∈ N, supn≥m f(n) is the smallest r ∈ [−∞,∞] such that r ≥ f(n) for every n ≥ m.

Definition 1.3. The limit inferior lim infn→∞ f(n) is defined by

lim inf
n→∞

f(n) = lim
m→∞

inf
n≥m

f(n).

Since the function g given by g(m) = infn≥m f(n) is non-decreasing, the limit exists in [−∞,∞].

Proposition 1.1. If z < lim infn→∞ f(n), then z < f(n) for all sufficiently large n ∈ N.

Proposition 1.2. If z > lim infn→∞ f(n), then z > f(n) for infinitely many n ∈ N.

Definition 1.4. The limit superior lim supn→∞ f(n) is defined by

lim sup
n→∞

f(n) = lim
m→∞

sup
n≥m

f(n).

Since the function g given by g(m) = supn≥m f(n) is non-increasing, the limit exists in [−∞,∞].

Proposition 1.3. If z > lim supn→∞ f(n), then z > f(n) for all sufficiently large n ∈ N.

Proposition 1.4. If z < lim supn→∞ f(n), then z < f(n) for infinitely many n ∈ N.

Proposition 1.5. For every m ∈ N, the infimum, limit inferior, limit superior, and supremum are related by

inf
n≥m

f(n) ≤ lim inf
n→∞

f(n) ≤ lim sup
n→∞

f(n) ≤ sup
n≥m

f(n).

Definition 1.5. The function f is said to converge in [−∞,∞] if and only if

lim inf
n→∞

f(n) = lim sup
n→∞

f(n).

Definition 1.6. The set of asymptotically positive function F is defined by

F = {f : N → R | there is an m ∈ N such that f(n) > 0 for every n ≥ m} .

Definition 1.7. For every f ∈ F and g ∈ F , let (f/g) ∈ F be given by

(f/g)(n) =

{
f(n)/g(n), if g(n) ̸= 0,

0, if g(n) = 0.

For convenience, we often write (f/g)(n) as f(n)/g(n), since (f/g)(n) = f(n)/g(n) for all sufficiently large n ∈ N.

Definition 1.8. If g ∈ F , then the following subsets of F are defined:

o(g) =

{
f ∈ F | lim sup

n→∞

f(n)

g(n)
= 0

}
,

O(g) =

{
f ∈ F | lim sup

n→∞

f(n)

g(n)
< ∞

}
,

Ω(g) =

{
f ∈ F | lim inf

n→∞

f(n)

g(n)
> 0

}
,

ω(g) =

{
f ∈ F | lim inf

n→∞

f(n)

g(n)
= ∞

}
,

Θ(g) = O(g) ∩ Ω(g).
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Consider a real number a > 0.

Example 1.1. Since limn→∞ an/n2 = lim supn→∞ an/n2 = lim infn→∞ an/n2 = 0:

• (n 7→ an) ∈ o(n 7→ n2), often written as an ∈ o(n2).

• (n 7→ an) ∈ O(n 7→ n2), often written as an ∈ O(n2).

• (n 7→ an) /∈ Ω(n 7→ n2), often written as an /∈ Ω(n2).

• (n 7→ an) /∈ ω(n 7→ n2), often written as an /∈ ω(n2).

• (n 7→ an) /∈ Θ(n 7→ n2), often written as an /∈ Θ(n2).

Example 1.2. Since limn→∞ n2/an = lim supn→∞ n2/an = lim infn→∞ n2/an = ∞:

• (n 7→ n2) /∈ o(n 7→ an), often written as n2 /∈ o(an).

• (n 7→ n2) /∈ O(n 7→ an), often written as n2 /∈ O(an).

• (n 7→ n2) ∈ Ω(n 7→ an), often written as n2 ∈ Ω(an).

• (n 7→ n2) ∈ ω(n 7→ an), often written as n2 ∈ ω(an).

• (n 7→ n2) /∈ Θ(n 7→ an), often written as n2 /∈ Θ(an).

Example 1.3. Since limn→∞ an2/n2 = lim supn→∞ an2/n2 = lim infn→∞ an2/n2 = a:

• (n 7→ an2) /∈ o(n 7→ n2), often written as an2 /∈ o(n2).

• (n 7→ an2) ∈ O(n 7→ n2), often written as an2 ∈ O(n2).

• (n 7→ an2) ∈ Ω(n 7→ n2), often written as an2 ∈ Ω(n2).

• (n 7→ an2) /∈ ω(n 7→ n2), often written as an2 /∈ ω(n2).

• (n 7→ an2) ∈ Θ(n 7→ n2), often written as an2 ∈ Θ(n2).

Proposition 1.6. For every f ∈ F and g ∈ F , unless the product on the right side below is 0 · ∞ or ∞ · 0,

lim sup
n→∞

f(n)g(n) ≤
(
lim sup
n→∞

f(n)

)(
lim sup
n→∞

g(n)

)
.

Proposition 1.7. For every f ∈ F and g ∈ F , unless the product on the right side below is 0 · ∞ or ∞ · 0,

lim inf
n→∞

f(n)g(n) ≥
(
lim inf
n→∞

f(n)
)(

lim inf
n→∞

g(n)
)
.

Proposition 1.8. If f ∈ F and lim infn→∞ f(n) > 0, then

lim sup
n→∞

1

f(n)
=

1

lim infn→∞ f(n)
,

where 1/∞ is used to denote 0 on the right side above.

Proposition 1.9. If f ∈ F and lim supn→∞ f(n) < ∞, then

lim inf
n→∞

1

f(n)
=

1

lim supn→∞ f(n)
,

where 1/0 is used to denote ∞ on the right side above.

Consider the functions f ∈ F , g ∈ F , and h ∈ F .

Proposition 1.10. If f ∈ F , then f ∈ O(f), f ∈ Ω(f), and f ∈ Θ(f). Furthermore, o(f) ⊆ O(f) and ω(f) ⊆ Ω(f).

Proposition 1.11. If f ∈ o(g) and g ∈ o(h), then f ∈ o(h).
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Proof. By Proposition 1.6,

0 ≤ lim sup
n→∞

f(n)

h(n)
= lim sup

n→∞

f(n)g(n)

g(n)h(n)
≤
(
lim sup
n→∞

f(n)

g(n)

)(
lim sup
n→∞

g(n)

h(n)

)
= 0.

Proposition 1.12. If f ∈ O(g) and g ∈ O(h), then f ∈ O(h).

Proof. By Proposition 1.6,

lim sup
n→∞

f(n)

h(n)
= lim sup

n→∞

f(n)g(n)

g(n)h(n)
≤
(
lim sup
n→∞

f(n)

g(n)

)(
lim sup
n→∞

g(n)

h(n)

)
< ∞.

Proposition 1.13. If f ∈ Ω(g) and g ∈ Ω(h), then f ∈ Ω(h).

Proof. By Proposition 1.7,

lim inf
n→∞

f(n)

h(n)
= lim inf

n→∞

f(n)g(n)

g(n)h(n)
≥
(
lim inf
n→∞

f(n)

g(n)

)(
lim inf
n→∞

g(n)

h(n)

)
> 0.

Proposition 1.14. If f ∈ ω(g) and g ∈ ω(h), then f ∈ ω(h).

Proof. By Proposition 1.7,

∞ ≥ lim inf
n→∞

f(n)

h(n)
= lim inf

n→∞

f(n)g(n)

g(n)h(n)
≥
(
lim inf
n→∞

f(n)

g(n)

)(
lim inf
n→∞

g(n)

h(n)

)
= ∞.

Proposition 1.15. If f ∈ Θ(g) and g ∈ Θ(h), then f ∈ Θ(h).

Proof. Since f ∈ O(g) and g ∈ O(h), we have f ∈ O(h). Since f ∈ Ω(g) and g ∈ Ω(h), we have f ∈ Ω(h).

Theorem 1.1. If f ∈ F and g ∈ F , then

• f ∈ O(g) if and only if g ∈ Ω(f).

• f ∈ o(g) if and only if g ∈ ω(f).

Proof. If f ∈ O(g) and f /∈ o(g), then lim supn→∞ f(n)/g(n) ∈ (0,∞). In that case, g ∈ Ω(f), since

lim inf
n→∞

g(n)

f(n)
=

1

lim supn→∞ f(n)/g(n)
> 0.

If f ∈ O(g) and f ∈ o(g), then lim supn→∞ f(n)/g(n) = 0 and lim infn→∞ g(n)/f(n) = ∞, so that g ∈ ω(f).
If g ∈ Ω(f) and g /∈ ω(f), then lim infn→∞ g(n)/f(n) ∈ (0,∞). In that case, f ∈ O(g), since

lim sup
n→∞

f(n)

g(n)
=

1

lim infn→∞ g(n)/f(n)
< ∞.

If g ∈ Ω(f) and g ∈ ω(f), then lim infn→∞ g(n)/f(n) = ∞ and lim supn→∞ f(n)/g(n) = 0, so that f ∈ o(g).

Proposition 1.16. If f ∈ F and g ∈ F , then f ∈ Θ(g) if and only if g ∈ Θ(f).

Proof. If f ∈ Θ(g), then f ∈ O(g) implies g ∈ Ω(f) and f ∈ Ω(g) implies g ∈ O(f); and vice versa.

Definition 1.9. The following binary relations are defined on the set F :

• f ≺ g if and only if f ∈ o(g).

• f ≾ g if and only if f ∈ O(g).
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• f ≿ g if and only if f ∈ Ω(g).

• f ≻ g if and only if f ∈ ω(g).

• f ∼ g if and only if f ∈ Θ(g).

Proposition 1.17. The binary relations ≺ and ≻ are strict preorders.

Proof. By the definition of strict preoder:

• It is false that f ≺ f . If f ≺ g and g ≺ h, then f ≺ h.

• It is false that f ≻ g. If f ≻ g and g ≻ h, then f ≻ h.

Proposition 1.18. The binary relations ≾ and ≿ are preorders.

Proof. By the definition of preorder:

• It is true that f ≾ f . If f ≾ g and g ≾ h, then f ≾ h.

• It is true that f ≿ f . If f ≿ g and g ≿ h, then f ≿ h.

Proposition 1.19. The binary relation ∼ is an equivalence relation.

Proof. It is true that f ∼ f . If f ∼ g, then g ∼ f ; if g ∼ f , then f ∼ g. If f ∼ g and g ∼ h, then f ∼ h.

Proposition 1.20. The binary relations defined on the set F are related by the following:

1. If f ≺ g, then f ≾ g.

2. If f ≻ g, then f ≿ g.

3. If f ≾ g and g ≾ f , then f ∼ g.

4. If f ≿ g and g ≿ f , then f ∼ g.

5. If f ≺ g, then not f ≿ g.

6. If f ≻ g, then not f ≾ g.

Proof. The first two claims follow from Proposition 1.10; the next two follow from Theorem 1.1; and the last two
follow from the fact that lim infn→∞ f(n)/g(n) ≤ lim supn→∞ f(n)/g(n).

Definition 1.10. Let A ∈ {o,O,Ω, ω,Θ}. For any functions f : N → R, g : N → R, and h ∈ F ,

f(n) = g(n) +A(h(n))

denotes that there is a function l ∈ A(h) such that f = g + l.

Consider a function f ∈ F .

Example 1.4. If a > 0, then f(n) = Θ(af(n)). In order to see this, note that f = 0 + f and f ∈ Θ(af), since

0 < lim inf
n→∞

f(n)

af(n)
= lim sup

n→∞

f(n)

af(n)
=

1

a
< ∞.

Example 1.5. If f(n) = n2 + O(n2), then f(n) = Θ(n2). Suppose that there is an l ∈ O(n 7→ n2) such that
f(n) = n2 + l(n) for every n ∈ N. In that case,

lim sup
n→∞

f(n)

n2
= lim sup

n→∞

n2 + l(n)

n2
= 1 + lim sup

n→∞

l(n)

n2
< ∞,

lim inf
n→∞

f(n)

n2
= lim inf

n→∞

n2 + l(n)

n2
= 1 + lim inf

n→∞

l(n)

n2
> 0,

so that f ∈ Θ(n 7→ n2). Since f = 0 + f and f ∈ Θ(n 7→ n2), we have f(n) = Θ(n2).
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2 Subgaussian random variables
For details about the notation employed below, see the measure-theoretic probability notes by the same author.

Consider a probability triple (Ω,F ,P) and a constant σ > 0.

Definition 2.1. A random variable X : Ω → R is 0-subgaussian if and only if P(X = 0) = 1.

Definition 2.2. A random variable X : Ω → R is σ-subgaussian if and only if, for every λ ∈ R,

E
(
eλX

)
≤ e

λ2σ2

2 .

Proposition 2.1. If a random variable X : Ω → R is σ-subgaussian, then, for every λ ∈ R,

E
(
eλ|X|

)
≤ 2e

λ2σ2

2 .

Proof. For every λ ∈ R, note that eλ|X| = eλXI{X≥0} + e−λXI{X<0}. Since ex > 0 for every x ∈ R, note that

E
(
eλXI{X≥0}

)
≤ E

(
eλX

)
≤ e

λ2σ2

2 and E
(
e−λXI{X<0}

)
≤ E

(
e−λX

)
≤ e

(−λ)2σ2

2 = e
λ2σ2

2 . Therefore,

E
(
eλ|X|

)
= E

(
eλXI{X≥0}

)
+ E

(
e−λXI{X<0}

)
≤ 2e

λ2σ2

2 .

Proposition 2.2. If a random variable X : Ω → R is σ-subgaussian, then E(X) = 0.

Proof. Recall that ex ≥ x+ 1 for every x ∈ R. Therefore, E(e|X|) ≥ E(|X|) + 1 and E(|X|) ≤ 2e
σ2

2 − 1.
For every λ ∈ R, recall that the function ϕ : R → R given by ϕ(x) = eλx is convex. By Jensen’s inequality,

eλE(X) = ϕ(E(X)) ≤ E(ϕ(X)) = E(eλX) ≤ e
λ2σ2

2 ,

so that λE(X) ≤ λ2σ2/2 for every λ ∈ R. If λ < 0, then E(X) ≥ λσ2/2. If λ > 0, then E(X) ≤ λσ2/2. Therefore,

0 = lim
λ→0−

λσ2

2
≤ E(X) ≤ lim

λ→0+

λσ2

2
= 0.

Proposition 2.3. If a random variable X : Ω → R is σ-subgaussian, then Var(X) ≤ σ2.

Proof. Recall that ex =
∑∞

n=0 x
n/n! for every x ∈ R. Therefore, for every λ ≥ 0 and k ∈ N,

eλ|X| =

∞∑
n=0

λn|X|n

n!
≥

k∑
n=0

λn|X|n

n!
=

k∑
n=0

∣∣∣∣λnXn

n!

∣∣∣∣ ≥
∣∣∣∣∣

k∑
n=0

λnXn

n!

∣∣∣∣∣ .
Since E

(
eλ|X|) < ∞, note that E(|X|k) < ∞ for every k ∈ N. By the dominated convergence theorem,

E
(
eλX

)
= E

( ∞∑
n=0

λnXn

n!

)
=

∞∑
n=0

λnE (Xn)

n!
= 1 +

λ2E
(
X2
)

2
+

∞∑
n=3

λnE (Xn)

n!
,

where we also used the fact that E(X) = 0.
For every λ ∈ [0, 1], note that λ2n ≤ λ4 for every n ≥ 2. Therefore, for every λ ∈ [0, 1],

e
λ2σ2

2 =

∞∑
n=0

λ2nσ2n

2nn!
= 1 +

λ2σ2

2
+

∞∑
n=2

λ2nσ2n

2nn!
≤ 1 +

λ2σ2

2
+ λ4

∞∑
n=2

σ2n

2nn!
≤ 1 +

λ2σ2

2
+ λ4e

σ2

2 .

For every λ ∈ [0, 1], by the definition of a σ-subgaussian random variable,

λ2E
(
X2
)

2
+

∞∑
n=3

λnE (Xn)

n!
≤ λ2σ2

2
+ λ4e

σ2

2 .
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For every λ ∈ (0, 1], by multiplying both sides by 2/λ2,

E
(
X2
)
+ 2

∞∑
n=3

λn−2E (Xn)

n!
≤ σ2 + 2λ2e

σ2

2 .

By taking the limit of both sides when λ → 0+,

E
(
X2
)
+ 2 lim

λ→0+

∞∑
n=3

λn−2E (Xn)

n!
≤ σ2 + 2e

σ2

2 lim
λ→0+

λ2 = σ2.

If the limit on the left side above is zero, then E
(
X2
)
≤ σ2. In that case, considering that E(X) = 0, note that

Var(X) = E(X2)− E(X)2 = E(X2) ≤ σ2, so that the proof will be complete. For every λ ∈ (0, 1],∣∣∣∣∣
∞∑

n=3

λn−2E (Xn)

n!

∣∣∣∣∣ = λ

∣∣∣∣∣
∞∑

n=3

λn−3E (Xn)

n!

∣∣∣∣∣ ≤ λ

∞∑
n=3

λn−3 |E (Xn)|
n!

.

For every k ∈ N and λ ∈ (0, 1], note that E(Xk) ≤ E(|X|k) < ∞ and λk ≤ 1. Therefore,∣∣∣∣∣
∞∑

n=3

λn−2E (Xn)

n!

∣∣∣∣∣ ≤ λ

∞∑
n=3

λn−3E (|X|n)
n!

≤ λ

∞∑
n=3

E (|X|n)
n!

≤ λE(e|X|) ≤ 2λe
σ2

2 ,

so that

0 ≤ lim
λ→0+

∣∣∣∣∣
∞∑

n=3

λn−2E (Xn)

n!

∣∣∣∣∣ ≤ 2e
σ2

2 lim
λ→0+

λ = 0.

Proposition 2.4. If a random variable X : Ω → R is σ-subgaussian, then cX is |c|σ-subgaussian for every c ∈ R.

Proof. This proposition is trivial if c = 0. If c ̸= 0, cX is a random variable and, for every λ ∈ R,

E(eλ(cX)) = E(e(λc)X) ≤ e
(λc)2σ2

2 = e
λ2c2σ2

2 = e
λ2|c|2σ2

2 = e
λ2(|c|σ)2

2 .

Consider the constants σ1 > 0 and σ2 > 0.

Proposition 2.5. If the random variable X1 : Ω → R is σ1-subgaussian, the random variable X2 is σ2-subgaussian,
and X1 and X2 are independent, then X1 +X2 is

√
σ2
1 + σ2

2-subgaussian.

Proof. For every λ ∈ R, because eλX1 and eλX2 are independent and P-integrable,

E(eλ(X1+X2)) = E(eλX1+λX2) = E(eλX1eλX2) = E(eλX1)E(eλX2) ≤ e
λ2σ2

1
2 e

λ2σ2
2

2 = e
λ2(σ2

1+σ2
2)

2 ,

so that the random variable X1 +X2 is
√
σ2
1 + σ2

2-subgaussian.

Proposition 2.6. If the random variable X1 : Ω → R is σ1-subgaussian and the random variable X2 is σ2-
subgaussian, then X1 +X2 is (σ1 + σ2)-subgaussian.

Proof. Note that E
(
|eλX1 |p

)
= E

(
eλpX1

)
< ∞ and E

(
|eλX2 |q

)
= E

(
eλqX2

)
< ∞ for every λ ∈ R, p ≥ 1, and q ≥ 1.

By Hölder’s inequality, if p > 1 and p−1 + q−1 = 1, then

E(eλ(X1+X2)) = E(eλX1+λX2) = E(eλX1eλX2) ≤ E(
∣∣eλX1

∣∣p) 1
pE(

∣∣eλX2
∣∣q) 1

q = E(eλpX1)
1
pE(eλqX2)

1
q .

By the definition of subgaussian random variables,

E(eλ(X1+X2)) ≤
(
e

λ2p2σ2
1

2

) 1
p
(
e

λ2q2σ2
2

2

) 1
q

= e
λ2pσ2

1
2 e

λ2qσ2
2

2 = e
λ2

2 (pσ2
1+qσ2

2).

Let p = (σ1 + σ2)/σ1 and q = (σ1 + σ2)/σ2, so that p > 1 and p−1 + q−1 = 1. In that case, for every λ ∈ R,

E(eλ(X1+X2)) ≤ e
λ2

2

(
σ1+σ2

σ1
σ2
1+

σ1+σ2
σ2

σ2
2

)
= e

λ2

2 (σ2
1+2σ1σ2+σ2

2) = e
λ2(σ1+σ2)2

2 ,

so that the random variable X1 +X2 is (σ1 + σ2)-subgaussian.
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Proposition 2.7. If a random variable X : Ω → R has a normal distribution with mean 0 and variance 1, then X
is 1-subgaussian.

Proof. For every λ ∈ R, considering a probability density function for the random variable X,

E
(
eλX

)
=

∫
R
eλx

e−
x2

2

√
2π

Leb(dx) =

∫
R

eλx−
x2

2

√
2π

Leb(dx) = e
λ2

2

∫
R

e−
(x−λ)2

2

√
2π

Leb(dx) = e
λ2

2 .

where we used the fact that λx − x2

2 = − (x−λ)2

2 + λ2

2 and recognized a probability density function for a random
variable that has a normal distribution with mean λ and variance 1.

Proposition 2.8. If a random variable X : Ω → R has a normal distribution with mean 0 and variance σ2, then
X is σ-subgaussian.

Proof. Recall that X/σ has a normal distribution with mean 0 and variance σ2/σ2 = 1. Therefore, X/σ is 1-
subgaussian, so that σX

σ = X is |σ|-subgaussian.

Lemma 2.1 (Hoeffding’s lemma). If X : Ω → R is a random variable such that E(X) = 0 and P(X ∈ [a, b]) = 1
for some a < b, then X is (b− a)/2-subgaussian.
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3 Concentration of measure
Consider a probability triple (Ω,F ,P) and a constant σ > 0.

Theorem 3.1. If X : Ω → R is a σ-subgaussian random variable, then, for every ϵ ≥ 0,

P (X ≤ −ϵ) ≤ e−
ϵ2

2σ2 ,

P (X ≥ ϵ) ≤ e−
ϵ2

2σ2 ,

P (|X| ≥ ϵ) ≤ 2e−
ϵ2

2σ2 .

Proof. Recall that the function g : R → [0,∞] given by g(x) = eλx is non-decreasing for every λ ≥ 0. For every
ϵ ∈ R, by Markov’s inequality,

E(e−λX) = E(g(−X)) ≥ g(ϵ)P(−X ≥ ϵ) = eλϵP(X ≤ −ϵ),

E(eλX) = E(g(X)) ≥ g(ϵ)P(X ≥ ϵ) = eλϵP(X ≥ ϵ).

For every ϵ ∈ R and λ ≥ 0, since X is a σ-subgaussian random variable and eλϵ > 0,

P(X ≤ −ϵ) ≤ E(e−λX)

eλϵ
≤ e

(−λ)2σ2

2

eλϵ
= e

λ2σ2

2 −λϵ,

P(X ≥ ϵ) ≤ E(eλX)

eλϵ
≤ e

λ2σ2

2

eλϵ
= e

λ2σ2

2 −λϵ.

For every ϵ ≥ 0, let λ = ϵ/σ2, so that λ ≥ 0. In that case,

P(X ≤ −ϵ) ≤ e
ϵ2

σ4
σ2

2 − ϵ2

σ2 = e
ϵ2

2σ2 − ϵ2

σ2 = e
ϵ2

σ2 ( 1
2−1) = e−

ϵ2

2σ2 ,

P(X ≥ ϵ) ≤ e
ϵ2

σ4
σ2

2 − ϵ2

σ2 = e
ϵ2

2σ2 − ϵ2

σ2 = e
ϵ2

σ2 ( 1
2−1) = e−

ϵ2

2σ2 .

Therefore, for every ϵ ≥ 0,

P (|X| ≥ ϵ) = P ({X ≤ −ϵ} ∪ {X ≥ ϵ}) ≤ P (X ≤ −ϵ) + P (X ≥ ϵ) ≤ 2e−
ϵ2

2σ2 .

Proposition 3.1. If X : Ω → R is a σ-subgaussian random variable, then, for every δ ∈ (0, 1],

P
(
X ≤ −

√
2σ2 log(1/δ)

)
≤ δ,

P
(
X ≥

√
2σ2 log(1/δ)

)
≤ δ,

P
(
|X| ≥

√
2σ2 log(2/δ)

)
≤ δ.

Proof. Let δ ∈ (0, 1]. If ϵ =
√
2σ2 log(1/δ), then ϵ ≥ 0 and δ = e−

ϵ2

2σ2 , which implies the first two inequalities. If

ϵ =
√
2σ2 log(2/δ), then ϵ ≥ 0 and δ = 2e−

ϵ2

2σ2 , which implies the last inequality.

Proposition 3.2. If X : Ω → R is a σ-subgaussian random variable, then, for every δ ∈ (0, 1],

P
(
X > −

√
2σ2 log(1/δ)

)
≥ 1− δ,

P
(
X <

√
2σ2 log(1/δ)

)
≥ 1− δ,

P
(
|X| <

√
2σ2 log(2/δ)

)
≥ 1− δ.

Proof. These inequalities follow from Proposition 3.1 and the fact that P(F c) = 1− P(F ) for every F ∈ F .
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Consider a sequence of independent random variables (Xk : Ω → R | k ∈ N+), each of which has the same law
as a random variable X ∈ L2(Ω,F ,P) and let µ = E(X).

Definition 3.1. For every t ∈ N+, the sample mean Mt : Ω → R after t observations is given by

Mt(ω) =
1

t

t∑
k=1

Xk(ω).

Proposition 3.3. For every t ∈ N+, E(Mt) = µ and Var(Mt) = Var(X)/t.

Proof. Recall that L2(Ω,F ,P) is a vector space over R, so that Mt ∈ L2(Ω,F ,P). By the linearity of expectation,

E (Mt) = E

(
1

t

t∑
k=1

Xk

)
=

1

t

t∑
k=1

E(Xk) =
1

t
tµ.

For every c ∈ R and Y ∈ L2(Ω,F ,P), recall that

Var(cY ) = E((cY )2)− E(cY )2 = E(c2Y 2)− (cE(Y ))
2
= c2E(Y 2)− c2E(Y )2 = c2 Var(Y ).

Therefore, because the random variables (Xk | k ∈ N+) are independent and identically distributed,

Var(Mt) = Var

(
1

t

t∑
k=1

Xk

)
=

1

t2
Var

(
t∑

k=1

Xk

)
=

1

t2

t∑
k=1

Var(Xk) =
1

t2
tVar(X).

Proposition 3.4. For every t ∈ N+ and ϵ > 0,

P(|Mt − µ| ≥ ϵ) ≤ Var(X)

tϵ2
.

Proof. By Chebyshev’s inequality, for every ϵ ≥ 0,

Var(X)

t
= Var(Mt) = E(|Mt − µ|2) ≥ ϵ2P(|Mt − µ| ≥ ϵ).

Proposition 3.5. If X − µ is a σ-subgaussian random variable, then, for every t ∈ N+ and ϵ > 0,

P(|Mt − µ| ≥ ϵ) ≤ σ2

tϵ2
.

Proof. This proposition is a consequence of Proposition 2.3 and Proposition 3.4, since

σ2 ≥ Var(X − µ) = E((X − µ)2)− E(X − µ)2 = Var(X)− (E(X)− µ)2 = Var(X).

Proposition 3.6. If X − µ is a σ-subgaussian random variable, then, for every t ∈ N+ and ϵ ≥ 0,

P (Mt ≤ µ− ϵ) ≤ e−
tϵ2

2σ2 ,

P (Mt ≥ µ+ ϵ) ≤ e−
tϵ2

2σ2 ,

P(|Mt − µ| ≥ ϵ) ≤ 2e−
tϵ2

2σ2 .

Proof. Recall that E(X − µ) = 0 and Var(X − µ) = Var(X). For every t ∈ N+,

Mt − µ =

(
1

t

t∑
k=1

Xk

)
− 1

t
tµ =

1

t

t∑
k=1

(Xk − µ).
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Because (Xk − µ | k ∈ N+) are independent σ-subgaussian random variables, Proposition 2.5 guarantees that∑t
k=1 (Xk − µ) is (σ

√
t)-subgaussian and Proposition 2.4 that Mt − µ is (σ/

√
t)-subgaussian. By Theorem 3.1,

P (Mt − µ ≤ −ϵ) ≤ e
− ϵ2

2(σ/
√

t)2 = e
− ϵ2

2(σ2/t) = e−
tϵ2

2σ2 ,

P (Mt − µ ≥ ϵ) ≤ e
− ϵ2

2(σ/
√

t)2 = e
− ϵ2

2(σ2/t) = e−
tϵ2

2σ2 ,

P(|Mt − µ| ≥ ϵ) ≤ 2e
− ϵ2

2(σ/
√

t)2 = 2e
− ϵ2

2(σ2/t) = 2e−
tϵ2

2σ2 .

Proposition 3.7. If X − µ is a σ-subgaussian random variable, then, for every t ∈ N+ and δ ∈ (0, 1],

P
(
Mt ≤ µ−

√
2σ2 log(1/δ)/t

)
≤ δ,

P
(
Mt ≥ µ+

√
2σ2 log(1/δ)/t

)
≤ δ,

P(|Mt − µ| ≥
√
2σ2 log(2/δ)/t) ≤ δ.

Proof. Let δ ∈ (0, 1]. If ϵ =
√

2σ2 log(1/δ)/t, then ϵ ≥ 0 and δ = e−
tϵ2

2σ2 , which implies the first two inequalities. If

ϵ =
√
2σ2 log(2/δ)/t, then ϵ ≥ 0 and δ = 2e−

tϵ2

2σ2 , which implies the last inequality.

Proposition 3.8. If X − µ is a σ-subgaussian random variable, then, for every t ∈ N+ and δ ∈ (0, 1],

P
(
Mt > µ−

√
2σ2 log(1/δ)/t

)
≥ 1− δ,

P
(
Mt < µ+

√
2σ2 log(1/δ)/t

)
≥ 1− δ,

P(|Mt − µ| <
√

2σ2 log(2/δ)/t) ≥ 1− δ.

Proof. These inequalities follow from Proposition 3.7 and the fact that P(F c) = 1− P(F ) for every F ∈ F .

Theorem 3.2 (Hoeffding’s inequality). Consider a sequence of independent random variables (Yk : Ω → R | k ∈ N+)
and suppose that there are constants ak ∈ R and bk ∈ R such that ak < bk and P(Yk ∈ [ak, bk]) = 1 for every
k ∈ N+. In that case, for every t ∈ N+ and ϵ ≥ 0,

P

(
1

t

t∑
k=1

(Yk − E(Yk)) ≥ ϵ

)
≤ e

− 2t2ϵ2∑t
k=1

(bk−ak)2 .

Proof. For every k ∈ N+, note that E (Yk − E(Yk)) = 0 and P((Yk − E(Yk)) ∈ [ak − E(Yk), bk − E(Yk)]) = 1, so
that Yk −E(Yk) is (bk − ak)/2-subgaussian by Lemma 2.1. Because (Yk − E(Yk) | k ∈ N+) are independent random

variables, Proposition 2.5 guarantees that
∑t

k=1(Yk − E(Yk)) is
√∑t

k=1(bk − ak)2/4-subgaussian and Proposition

2.4 that
∑t

k=1(Yk − E(Yk))/t is
√∑t

k=1(bk − ak)2/(4t2)-subgaussian. By Theorem 3.1,

P

(
1

t

t∑
k=1

(Yk − E(Yk)) ≥ ϵ

)
≤ e

− ϵ2

2(
√∑t

k=1
(bk−ak)2/(4t2))

2

= e
− ϵ2

1
2t2

∑t
k=1

(bk−ak)2 = e
− 2t2ϵ2∑t

k=1
(bk−ak)2 .

Theorem 3.3 (Bretagnolle-Huber-Carol inequality). Suppose that there is an m ∈ N+ such that X(ω) ∈ {1, . . . ,m}
for every ω ∈ Ω. Consider a vector p ∈ [0, 1]m such that pi = P(X = i) for every i ∈ {1, . . . ,m} and a random
vector Pt : Ω → [0, 1]m such that Pt,i = 1/t

∑t
k=1 I{Xk=i} for every t ∈ N+ and i ∈ {1, . . . ,m}. For every δ ∈ (0, 1],

P
(
||Pt − p||1 ≥

√
2 (log(1/δ) +m log(2)) /t

)
≤ δ.
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Proof. Recall that |a| = max(a,−a) for every a ∈ R. Therefore, for every t ∈ N+,

∥Pt − p∥1 =

m∑
i=1

|Pt,i − pi| =
m∑
i=1

max
λi∈{−1,1}

λi(Pt,i − pi) = max
λ∈{−1,1}m

m∑
i=1

λi(Pt,i − pi).

For every t ∈ N+, by expanding the previous expression and exchanging the order of the summations,

∥Pt − p∥1 = max
λ∈{−1,1}m

m∑
i=1

λi

(
1

t

t∑
k=1

I{Xk=i} −
1

t

t∑
k=1

pi

)
= max

λ∈{−1,1}m

1

t

t∑
k=1

m∑
i=1

λiI{Xk=i} − λipi.

For every k ∈ {1, . . . , t} and λ ∈ {−1, 1}m, let Y
(λ)
k =

∑m
i=1 λiI{Xk=i} = λXk

, so that |Y (λ)
k | ≤ 1 and

E
(
Y

(λ)
k

)
= E

(
m∑
i=1

λiI{Xk=i}

)
=

m∑
i=1

λiP(Xk = i) =

m∑
i=1

λiP(X = i) =

m∑
i=1

λipi.

For every t ∈ N+, by rewriting a previous expression,

∥Pt − p∥1 = max
λ∈{−1,1}m

1

t

t∑
k=1

(
Y

(λ)
k − E

(
Y

(λ)
k

))
.

Therefore, for every t ∈ N+ and ϵ ≥ 0,

{∥Pt − p∥1 ≥ ϵ} =

{
max

λ∈{−1,1}m

1

t

t∑
k=1

(
Y

(λ)
k − E

(
Y

(λ)
k

))
≥ ϵ

}
=

⋃
λ∈{−1,1}m

{
1

t

t∑
k=1

(
Y

(λ)
k − E

(
Y

(λ)
k

))
≥ ϵ

}
.

By employing a union bound, Theorem 3.2, and the fact that the set {−1, 1}m has 2m elements,

P (∥Pt − p∥1 ≥ ϵ) ≤
∑

λ∈{−1,1}m

P

(
1

t

t∑
k=1

(
Y

(λ)
k − E

(
Y

(λ)
k

))
≥ ϵ

)
≤

∑
λ∈{−1,1}m

e−
tϵ2

2 = 2me−
tϵ2

2

Let δ ∈ (0, 1]. If ϵ =
√
2 (log(1/δ) +m log(2)) /t, then ϵ ≥ 0 and δ = 2me−

tϵ2

2 . Therefore,

P
(
||Pt − p||1 ≥

√
2 (log(1/δ) +m log(2)) /t

)
≤ δ.
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4 Stochastic bandits
Definition 4.1. A set of actions A is a non-empty subset of N.

Definition 4.2. For a set of actions A, consider a sequence of probability measures ν = (Pa | a ∈ A) on the
measurable space (R,B(R)). If h : R → R is a B(R)-measurable function and there is a constant c ∈ [0,∞) such
that

∫
R |h(x)| Pa(dx) ≤ c for every action a ∈ A, then h is ν-integrable.

Definition 4.3. For a set of actions A, consider a sequence of probability measures ν = (Pa | a ∈ A) on the
measurable space (R,B(R)). If the identity function is ν-integrable, the mean µν

a of action a is defined by µν
a =∫

R x Pa(dx) and the supremum mean µν
∗ is defined by µν

∗ = supa µ
ν
a. If µν

a = µν
∗ for some action a ∈ A, then ν is a

stochastic bandit for the set of actions A.

Proposition 4.1. If ν = (Pa | a ∈ A) is a stochastic bandit for the set of actions A, then there is a constant
c ∈ [0,∞) such that µν

a ∈ [−c, c] for every action a ∈ A.

Proof. Since the identity function is ν-integrable, there is a constant c ∈ [0,∞) such that
∫
R |x| Pa(dx) ≤ c for

every action a ∈ A. Therefore, |µν
a| =

∣∣∫
R x Pa(dx)

∣∣ ≤ ∫R |x| Pa(dx) ≤ c for every action a ∈ A.

Definition 4.4. For a set of actions A, a policy π is a sequence of functions (πt : Rt → A | t ∈ N+), where the
so-called policy πt for time step t is B(Rt)-measurable.

Proposition 4.2. For a set of actions A, a stochastic bandit ν = (Pa | a ∈ A), and a policy π = (πt | t ∈ N+),
there is a probability triple (Ω,F ,P) carrying a stochastic process (Xt : Ω → R | t ∈ N) such that E(|Xt|) < ∞ and

P (Xt ∈ B | X0, . . . , Xt−1) = PAt
(B)

almost surely for every t ∈ N+ and B ∈ B(R), where At = πt(X0, . . . , Xt−1). Additionally, if a function h : R → R
is ν-integrable, then E(|h(Xt)|) < ∞ for every t ∈ N+.

Proof. By Kolmogorov’s extension theorem, there is a probability triple (Ω,F ,P) carrying a countable set of inde-
pendent random variables {Zt,a : Ω → R | t ∈ N+ and a ∈ A} such that P(Zt,a ∈ B) = Pa(B) for every t ∈ N+,
a ∈ A, and B ∈ B(R). For every t ∈ N+, let At : Ω → A and Xt : Ω → R be given by

At(ω) = πt(X0(ω), . . . , Xt−1(ω)),

Xt(ω) = Zt,At(ω)(ω) =
∑
a

I{At=a}(ω)Zt,a(ω),

where X0 : Ω → R is given by X0(ω) = 0.
For every t ∈ N+, let Ft−1 = σ

(⋃
k<t,a σ(Zk,a)

)
. For every t ∈ N+ and a ∈ A, note that σ(I{At=a}) ⊆ σ(At) ⊆

σ(X0, . . . , Xt−1) ⊆ Ft−1. Because Ft−1 and σ(Zt,a) are independent, so are I{At=a} and Zt,a.
Therefore, if a function h : R → R is ν-integrable, then E (|h(Xt)|) < ∞ for every t ∈ N+, since

E (|h(Xt)|) =
∑
a

E
(
I{At=a} |h(Zt,a)|

)
=
∑
a

E
(
I{At=a}

)
E (|h(Zt,a)|) =

∑
a

P(At = a)

∫
R
|h(x)| Pa(dx) ≤ c < ∞.

In particular, because the identity function is ν-integrable, E (|Xt|) < ∞ for every t ∈ N+.
By definition, almost surely for every t ∈ N+ and B ∈ B(R),

P (Xt ∈ B | X0, . . . , Xt−1) = E
(
I{Xt∈B} | σ(X0, . . . , Xt−1)

)
.

For every t ∈ N+ and B ∈ B(R), note that {Xt ∈ B} =
⋃

a{At = a} ∩ {Zt,a ∈ B}. Therefore, almost surely,

P (Xt ∈ B | X0, . . . , Xt−1) =
∑
a

E
(
I{At=a}I{Zt,a∈B} | σ(X0, . . . , Xt−1)

)
.

For every t ∈ N+ and a ∈ A, recall that I{At=a} is σ(X0, . . . , Xt−1)-measurable. Therefore, almost surely,

P (Xt ∈ B | X0, . . . , Xt−1) =
∑
a

I{At=a}E
(
I{Zt,a∈B} | σ(X0, . . . , Xt−1)

)
.

Since σ(X0, . . . , Xt−1) ⊆ Ft−1 and σ
(
I{Zt,a∈B}

)
⊆ σ(Zt,a) are independent, almost surely,

P (Xt ∈ B | X0, . . . , Xt−1) =
∑
a

I{At=a}E
(
I{Zt,a∈B}

)
=
∑
a

I{At=a}Pa(B) = PAt
(B).
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Definition 4.5. The canonical space (Ω,F) that carries the reward process X = (Xt | t ∈ N) is a measurable
space such that Ω = R∞. Furthermore, for every t ∈ N, the function Xt : Ω → R is given by Xt(ω) = ωt and the
σ-algebra F on Ω is given by F = σ(X0, X1, . . .).

Theorem 4.1. For every set of actions A, stochastic bandit ν = (Pa | a ∈ A), and policy π = (πt | t ∈ N+), there
is a probability measure Pν,π on the the canonical space (Ω,F) that carries the reward process X = (Xt | t ∈ N)
such that Eν,π(|Xt|) < ∞ and

Pν,π (Xt ∈ B | X0, . . . , Xt−1) = PAt
(B)

almost surely for every t ∈ N+ and B ∈ B(R), where At = πt(X0, . . . , Xt−1). Additionally, if a function h : R → R
is ν-integrable, then Eν,π(|h(Xt)|) < ∞ for every t ∈ N+. The probability triple (Ω,F ,Pν,π) is called a canonical
triple for the stochastic bandit ν under the policy π.

Proof. Proposition 4.2 ensures that there is a probability triple (Ω̃ν,π, F̃ν,π, P̃ν,π) carrying a stochastic process
(X̃ν,π

t : Ω̃ν,π → R | t ∈ N) such that, almost surely,

P̃ν,π
(
X̃ν,π

t ∈ B | X̃ν,π
0 , . . . , X̃ν,π

t−1

)
= PÃt

(B)

for every t ∈ N+ and B ∈ B(R), where Ãt = πt(X̃
ν,π
0 , . . . , X̃ν,π

t−1).
Consider the function X̃ν,π : Ω̃ν,π → Ω given by X̃ν,π(ω̃) = (X̃ν,π

t (ω̃) | t ∈ N). The function X̃ν,π is F̃ν,π/F-
measurable, so that the function Pν,π : F → [0, 1] defined by

Pν,π(F ) = P̃ν,π

((
X̃ν,π

)−1

(F )

)
= P̃ν,π

(
{ω̃ ∈ Ω̃ν,π | X̃ν,π(ω̃) ∈ F}

)
is a probability measure on the measurable space (Ω,F).

In order to show that X̃ν,π is σ(X̃ν,π
0 , . . . , X̃ν,π

t )/σ(X0, . . . , Xt)-measurable for every t ∈ N+, let It be given by

It =

{
t⋂

k=0

{Xk ∈ Bk} | Bk ∈ B(R) for every k ∈ {0, . . . , t}

}
,

so that It is a π-system on Ω such that σ(It) = σ(X0, . . . , Xt). For every t ∈ N+ and It ∈ It,

(X̃ν,π)−1(It) = (X̃ν,π)−1

(
t⋂

k=0

{Xk ∈ Bk}

)
=

t⋂
k=0

(X̃ν,π)−1 ({Xk ∈ Bk}) =
t⋂

k=0

{X̃ν,π
k ∈ Bk},

which uses the fact that

(X̃ν,π)−1 ({Xk ∈ Bk}) =
{
ω̃ ∈ Ω̃ν,π | X̃ν,π(ω̃) ∈ {ω ∈ Ω | ωk ∈ Bk}

}
= {X̃ν,π

k ∈ Bk}.

Since (X̃ν,π)−1 (It) ∈ σ(X̃ν,π
0 , . . . , X̃ν,π

t ) for every It ∈ It, X̃ν,π is σ(X̃ν,π
0 , . . . , X̃ν,π

t )/σ(X0, . . . , Xt)-measurable.
For every t ∈ N+ and Ht−1 ∈ σ(X0, . . . , Xt−1), let H̃t−1 = (X̃ν,π)−1(Ht−1). For every B ∈ B(R),

Eν,π
(
I{Xt∈B}IHt−1

)
= Pν,π ({Xt ∈ B} ∩Ht−1) = P̃ν,π

(
(X̃ν,π)−1({Xt ∈ B}) ∩ (X̃ν,π)−1(Ht−1)

)
.

Because H̃t−1 ∈ σ(X̃ν,π
0 , . . . , X̃ν,π

t−1),

Eν,π
(
I{Xt∈B}IHt−1

)
= P̃ν,π

(
{X̃ν,π

t ∈ B} ∩ H̃t−1

)
= Ẽν,π

(
I{X̃ν,π

t ∈B}IH̃t−1

)
= Ẽν,π

(
PÃt

(B)IH̃t−1

)
,

where Ãt = πt(X̃
ν,π
0 , . . . , X̃ν,π

t−1). Therefore,

Eν,π
(
I{Xt∈B}IHt−1

)
= Ẽν,π

(∑
a

I{Ãt=a}Pa(B)IH̃t−1

)
=
∑
a

Pa(B)P̃ν,π
(
{Ãt = a} ∩ H̃t−1

)
.

For every a ∈ A, note that Pν,π ({At = a} ∩Ht−1) is given by

Pν,π ({At = a} ∩Ht−1) = P̃ν,π
(
(X̃ν,π)−1({At = a}) ∩ (X̃ν,π)−1(Ht−1)

)
= P̃ν,π

(
{Ãt = a} ∩ H̃t−1

)
,
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which uses the fact that

(X̃ν,π)−1({At = a}) = {ω̃ ∈ Ω̃ν,π | X̃ν,π(ω̃) ∈ {ω ∈ Ω | πt(ω0, . . . , ωt−1) = a}} = {Ãt = a}.

Finally, for every t ∈ N+, Ht−1 ∈ σ(X0, . . . , Xt−1), B ∈ B(R),

Eν,π
(
I{Xt∈B}IHt−1

)
=
∑
a

Pa(B)Pν,π ({At = a} ∩Ht−1) = Eν,π
(
PAt(B)IHt−1

)
.

Because PAt(B) is σ(X0, . . . , Xt−1)-measurable, almost surely,

Pν,π (Xt ∈ B | X0, . . . , Xt−1) = Eν,π
(
I{Xt∈B} | σ(X0, . . . , Xt−1)

)
= PAt

(B).

For every t ∈ N+, consider the law Lt : B(R) → [0, 1] given by

Lt(B) = Pν,π(Xt ∈ B) = P̃ν,π
(
(X̃ν,π)−1 ({Xt ∈ B})

)
= P̃ν,π(X̃ν,π

t ∈ B).

If a function h : R → R is ν-integrable, then Eν,π (|h(Xt)|) < ∞ for every t ∈ N+, since

Eν,π (|h(Xt)|) =
∫
R
|h(x)| Lt(dx) = Ẽν,π(|h(X̃ν,π

t )|) < ∞.

In particular, because the identity function is ν-integrable, Eν,π (|Xt|) < ∞ for every t ∈ N+.

For the remaining, consider a set of actions A, a stochastic bandit ν = (Pa | a ∈ A), a policy π = (πt | t ∈ N+),
and let (Ω,F ,Pν,π) be a canonical triple for the stochastic bandit ν under the policy π.

Proposition 4.3. For every t ∈ N+, if a function h : R → R is ν-integrable, then

Eν,π (h(Xt) | X0, . . . , Xt−1) =
∑
a

I{At=a}

∫
R
h(x) Pa(dx)

almost surely, where At = πt(X0, . . . , Xt−1).

Proof. Since the function h : R → R is ν-integrable, recall that Eν,π(|h(Xt)|) < ∞ for every t ∈ N+.
First, suppose that h = IB for some B ∈ B(R). Because IB(Xt) = I{Xt∈B}, almost surely,

Eν,π (IB(Xt) | X0, . . . , Xt−1) = PAt
(B) =

∑
a

I{At=a}Pa(B) =
∑
a

I{At=a}

∫
R
IB(x) Pa(dx).

Next, suppose that h is a simple function that can be written as h =
∑m

k=1 bkIBk
for some fixed b1, b2, . . . , bm ∈

[0,∞] and B1, B2, . . . , Bm ∈ B(R). Almost surely,

Eν,π

(
m∑

k=1

bkIBk
(Xt) | X0, . . . , Xt−1

)
=

m∑
k=1

bk
∑
a

I{At=a}

∫
R
IBk

(x) Pa(dx) =
∑
a

I{At=a}

∫
R

m∑
k=1

bkIBk
(x) Pa(dx).

Next, suppose that h is a non-negative B(R)-measurable function. For any k ∈ N, consider the simple function
hk = αk ◦ h, where αk is the k-th staircase function. Almost surely, since hk(Xt) ↑ h(Xt),

Eν,π (h(Xt) | X0, . . . , Xt−1) = Eν,π

(
lim
k→∞

hk(Xt) | X0, . . . , Xt−1

)
= lim

k→∞
Eν,π (hk(Xt) | X0, . . . , Xt−1) .

Since hk ↑ h, by the monotone-convergence theorem, almost surely,

Eν,π (h(Xt) | X0, . . . , Xt−1) = lim
k→∞

∑
a

I{At=a}

∫
R
hk(x) Pa(dx) =

∑
a

I{At=a}

∫
R

lim
k→∞

hk(x) Pa(dx).

Finally, suppose that h = h+ − h− is a B(R)-measurable function. Almost surely,

Eν,π (h(Xt) | X0, . . . , Xt−1) =

(∑
a

I{At=a}

∫
R
h+(x) Pa(dx)

)
−

(∑
a

I{At=a}

∫
R
h−(x) Pa(dx)

)
.
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By the linearity of the integral, almost surely,

Eν,π (h(Xt) | X0, . . . , Xt−1) =
∑
a

I{At=a}

∫
R
(h+(x)− h−(x)) Pa(dx) =

∑
a

I{At=a}

∫
R
h(x) Pa(dx).

Proposition 4.4. If t ∈ N+ and At = πt(X0, . . . , Xt−1), then Eν,π (Xt | At) = µν
At

almost surely.

Proof. For every t ∈ N+, Eν,π (|Xt|) < ∞ and At is σ(X0, . . . , Xt−1)-measurable. Therefore, almost surely,

Eν,π (Xt | At) = Eν,π (Eν,π (Xt | X0, . . . , Xt−1) | At) =
∑
a

I{At=a}

∫
R
x Pa(dx) =

∑
a

I{At=a}µ
ν
a = µν

At
,

by the tower property, Proposition 4.3 applied to the identity function, and taking out what is known.

Proposition 4.5. If t ∈ N+ and At = πt(X0, . . . , Xt−1), then

Eν,π (Xt) = Eν,π (Eν,π (Xt | At)) = Eν,π
(
µν
At

)
=
∑
a

µν
aPν,π (At = a) .

Definition 4.6. For every t ∈ N+, the total reward St after t time steps is given by St =
∑t

k=1 Xk.

Definition 4.7. For every t ∈ N+, the regret Rν,π
t of policy π on ν after t time steps is given by

Rν,π
t = tµν

∗ −
t∑

k=1

Eν,π (Xk) .

Definition 4.8. For every action a ∈ A, the suboptimality gap is defined by ∆ν
a = µν

∗ − µν
a, so that ∆ν

a ≥ 0.

Definition 4.9. The number of times Tπ
t,a : Ω → {0, . . . , t} that policy π selects a ∈ A by time t ∈ N+ is given by

Tπ
t,a(ω) =

t∑
k=1

I{Ak=a}(ω),

where Ak = πk(X0, . . . , Xk−1) for every k ≤ t. Note that
∑

a T
π
t,a(ω) = t for every ω ∈ Ω.

Definition 4.10. The average reward Mπ
t,a : Ω → R that policy π observes for a ∈ A by time t ∈ N+ is given by

Mπ
t,a(ω) =

1

Tπ
t,a(ω)

t∑
k=1

Xk(ω)I{Ak=a}(ω)

whenever Tπ
t,a(ω) > 0, where Ak = πk(X0, . . . , Xk−1) for every k ≤ t.

Theorem 4.2. For every t ∈ N+, the regret Rν,π
t of policy π on ν after t time steps is given by

Rν,π
t =

∑
a

∆ν
aEν,π

(
Tπ
t,a

)
.

Proof. For every t ∈ N+, let Ak = πk(X0, . . . , Xk−1) for every k ≤ t, so that Eν,π(Tπ
t,a) =

∑t
k=1 Pν,π(Ak = a) and

∑
a

Eν,π(Tπ
t,a) =

∑
a

t∑
k=1

Pν,π(Ak = a) =

t∑
k=1

∑
a

Pν,π(Ak = a) = t.

By the definition of the regret Rν,π
t of policy π on ν after t time steps,

Rν,π
t = tµν

∗ −
t∑

k=1

Eν,π (Xk) =

t∑
k=1

∑
a

µν
∗Pν,π (Ak = a)−

t∑
k=1

∑
a

µν
aPν,π (Ak = a) .

By rearranging terms and the definition of suboptimality gap,

Rν,π
t =

t∑
k=1

∑
a

(µν
∗ − µν

a)Pν,π (Ak = a) =
∑
a

∆ν
a

t∑
k=1

Pν,π (Ak = a) =
∑
a

∆ν
aEν,π(Tπ

t,a).
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Proposition 4.6. If t ∈ N+, then Rν,π
t ≥ 0.

Proof. Since ∆ν
a ≥ 0 and Eν,π

(
Tπ
t,a

)
≥ 0 for every a ∈ A and t ∈ N+, the claim is a consequence of Theorem 4.2.

Proposition 4.7. Consider an action a∗ ∈ A such that µν
a∗ = µν

∗ . If πt = a∗ for every t ∈ N+, then Rν,π
t = 0.

Proof. For every t ∈ N+, note that Tπ
t,a = 0 for every a ̸= a∗. Therefore,

Rν,π
t =

∑
a

∆ν
aEν,π(Tπ

t,a) = ∆ν
a∗Eν,π(Tπ

t,a∗) = (µν
∗ − µν

a∗)Eν,π(Tπ
t,a∗) = 0.

Proposition 4.8. For every t ∈ N+, let Ak = πk(X0, . . . , Xk−1) for every k ≤ t. If Rν,π
t = 0, then µν

Ak
= µν

∗ almost
surely for every k ≤ t.

Proof. For every t ∈ N+, by Theorem 4.2,

Rν,π
t =

∑
a

∆ν
aEν,π(Tπ

t,a) =
∑
a

∆ν
a

t∑
k=1

Eν,π
(
I{Ak=a}

)
=

t∑
k=1

Eν,π

(∑
a

I{Ak=a}∆
ν
a

)
=

t∑
k=1

Eν,π
(
∆ν

Ak

)
.

Suppose that Pν,π
(
µν
Ak

= µν
∗
)
< 1 for some k ≤ t, so that Pν,π

(
µν
Ak

< µν
∗
)
> 0 and Pν,π

(
∆ν

Ak
> 0
)
> 0. In that

case, Eν,π
(
∆ν

Ak

)
> 0, so that Rν,π

t > 0.

For convenience, let Rν,π
0 = 0.

Proposition 4.9. If Rν,π
t = o(t), then

µν
∗ = lim

t→∞

1

t

t∑
k=1

Eν,π (Xk) .

Proof. Since Rν,π
· : N → R is asymptotically positive by assumption,

0 = lim sup
t→∞

Rν,π
t

t
≥ lim inf

t→∞

Rν,π
t

t
≥ 0,

so that

0 = lim
t→∞

Rν,π
t

t
= lim

t→∞
µν
∗ − 1

t

t∑
k=1

Eν,π (Xk) = µν
∗ − lim

t→∞

1

t

t∑
k=1

Eν,π (Xk) .

Definition 4.11. The number of times T ν,π
t,∗ : Ω → {0, . . . , t} that policy π selects an optimal action on the

stochastic bandit ν by time step t ∈ N+ is given by

T ν,π
t,∗ (ω) =

t∑
k=1

I{µν
Ak

=µν
∗}(ω) =

t∑
k=1

I{∆ν
Ak

=0}(ω),

where Ak = πk(X0, . . . , Xk−1) for every k ≤ t.

Proposition 4.10. The number of times T ν,π
t,∗ : Ω → {0, . . . , t} that policy π selects an optimal action on the

stochastic bandit ν by time step t ∈ N+ is given by

T ν,π
t,∗ (ω) =

∑
a|∆ν

a=0

Tπ
t,a(ω).
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Proof. For every t ∈ N+, let Ak = πk(X0, . . . , Xk−1) for every k ≤ t. In that case,

{∆ν
Ak

= 0} =
⋃
a

{Ak = a and ∆ν
a = 0} =

⋃
a|∆ν

a=0

{Ak = a},

so that

T ν,π
t,∗ (ω) =

t∑
k=1

I{∆ν
Ak

=0}(ω) =

t∑
k=1

∑
a|∆ν

a=0

I{Ak=a}(ω) =
∑

a|∆ν
a=0

t∑
k=1

I{Ak=a}(ω) =
∑

a|∆ν
a=0

Tπ
t,a(ω).

Proposition 4.11. If the set of actions A is finite and Rν,π
t = o(t), then

lim
t→∞

Eν,π
(
T ν,π
t,∗
)

t
= 1.

Proof. By Theorem 4.2,

0 = lim
t→∞

Rν,π
t

t
= lim

t→∞

∑
a ∆

ν
aEν,π

(
Tπ
t,a

)
t

= lim
t→∞

∑
a

∆ν
a

Eν,π
(
Tπ
t,a

)
t

=
∑
a

∆ν
a lim
t→∞

Eν,π
(
Tπ
t,a

)
t

,

so that limt→∞ Eν,π
(
Tπ
t,a

)
/t = 0 whenever ∆ν

a > 0. Therefore,

0 =
∑

a|∆ν
a>0

lim
t→∞

Eν,π
(
Tπ
t,a

)
t

= lim
t→∞

∑
a|∆ν

a>0

Eν,π
(
Tπ
t,a

)
t

.

For every t ∈ N+, recall that
∑

a T
π
t,a = t. By Proposition 4.10,

t =
∑
a

Eν,π(Tπ
t,a) =

∑
a|∆ν

a=0

Eν,π(Tπ
t,a) +

∑
a|∆ν

a>0

Eν,π(Tπ
t,a) = Eν,π

(
T ν,π
t,∗
)
+

∑
a|∆ν

a>0

Eν,π(Tπ
t,a),

so that ∑
a|∆ν

a>0

Eν,π
(
Tπ
t,a

)
t

= 1−
Eν,π

(
T ν,π
t,∗
)

t
.

Therefore, considering a previous equation,

0 = lim
t→∞

1−
Eν,π

(
T ν,π
t,∗
)

t
= 1− lim

t→∞

Eν,π
(
T ν,π
t,∗
)

t
.

Since Eν,π
(
T ν,π
t,∗
)
> 0 for some t ∈ N+ and Eν,π

(
T ν,π
t,∗
)
≤ Eν,π

(
T ν,π
t,∗
)
, note that Eν,π

(
T ν,π
t,∗
)
= Θ(t).

Definition 4.12. For a set of actions A, an environment class E is a set of stochastic bandits for A.

Definition 4.13. For a set of actions A and an environment class E , consider a probability triple (E ,G,Q) such
that R·,π

t : E → [0,∞] is G-measurable for every policy π and time step t ∈ N+. The Bayesian regret Bπ
t of policy

π after t ∈ N+ time steps is given by

Bπ
t =

∫
E
Rν,π

t Q(dν).

Definition 4.14. The stochastic bandit ν = (Pa | a ∈ A) is σ-subgaussian if, for every a ∈ A, the random variable
Za on the probability triple (R,B(R), Pa) given by Za(x) = x− µν

a is σ-subgaussian. Note that Ea(Za) = 0.
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5 Explore-then-commit
Definition 5.1. If (xn ∈ R | n ∈ N) is a sequence of real numbers, then argmaxn xn is given by

argmax
n

xn = inf({m ∈ N | xm = sup
n

xn}).

Note that argmaxn xn ∈ N ∪ {∞}, since inf(∅) = ∞.

Consider a measurable space (Ω,F) and a stochastic process (Yn : Ω → R | n ∈ N).

Definition 5.2. The function argmaxn Yn : Ω → N ∪ {∞} is given by(
argmax

n
Yn

)
(ω) = argmax

n
Yn(ω).

Proposition 5.1. The function argmaxn Yn : Ω → N ∪ {∞} is F-measurable.

Proof. Recall that the function supn Yn is F-measurable, so that the function Zm : Ω → N ∪ {∞} given by

Zm(ω) = mI{Ym=supn Yn}(ω) +∞I{Ym ̸=supn Yn}(ω) =

{
m, if Ym(ω) = supn Yn(ω),

∞, if Ym(ω) ̸= supn Yn(ω)

is F-measurable for every m ∈ N. Furthermore, recall that the function infm Zm is F-measurable and note that

inf
m

Zm(ω) = inf

({
m ∈ N | Ym(ω) = sup

n
Yn(ω)

})
= argmax

n
Yn(ω) =

(
argmax

n
Yn

)
(ω).

Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a
policy π = (πt | t ∈ N+), and let (Ω,F ,Pν,π) be a canonical triple for the stochastic bandit ν under the policy π.

Definition 5.3. A policy π implements explore-then-commit with m ∈ N+ exploration steps if, for every t ∈ N+,

πt(X0, . . . , Xt−1) =

{
((t− 1) mod n) + 1, if t ≤ mn,

argmaxa M
π
mn,a, if t > mn.

Note that Mπ
t,a is well-defined for every t ≥ n and a ∈ A.

Proposition 5.2. If the policy π implements explore-then-commit with m ∈ N+ exploration steps and t ≤ mn,
then Pν,π(Xt ∈ B) = Pat

(B) for every B ∈ B(R), where at = ((t− 1) mod n) + 1.

Proof. For every t ∈ N+ such that t ≤ mn, let At = πt(X0, . . . , Xt−1), so that At = at. For every B ∈ B(R),

Pν,π(Xt ∈ B) = Eν,π
(
Eν,π

(
I{Xt∈B} | X0, . . . , Xt−1

))
= Eν,π (PAt

(B)) = Eν,π (Pat
(B)) = Pat

(B).

Proposition 5.3. If the policy π implements explore-then-commit with m ∈ N+ exploration steps, then the random
variables X0, X1, . . . , Xmn are independent in (Ω,F ,Pν,π).

Proof. Note that X0 and X1 are independent because σ(X0) = {∅,Ω}. Suppose that X0, X1, . . . , Xt are independent
for some t ∈ N+ such that t < mn. We will show that X0, X1, . . . , Xt+1 are independent.

For every B0, B1, . . . , Bt+1 ∈ B(R), by taking out what is known,

Pν,π

(
t+1⋂
k=0

{Xk ∈ Bk}

)
= Eν,π

(
t+1∏
k=0

I{Xk∈Bk}

)
= Eν,π

(
t∏

k=0

I{Xk∈Bk}E
ν,π
(
I{Xt+1∈Bt+1} | X0, . . . , Xt

))
.

Let at+1 = (t mod n) + 1, so that πt+1(X0, . . . , Xt) = at+1. In that case,

Pν,π

(
t+1⋂
k=0

{Xk ∈ Bk}

)
= Eν,π

((
t∏

k=0

I{Xk∈Bk}

)
Pat+1

(Bt+1)

)
= Eν,π

(
t∏

k=0

I{Xk∈Bk}

)
Pat+1

(Bt+1).
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By Proposition 5.2 and because X0, X1, . . . , Xt are independent by assumption,

Pν,π

(
t+1⋂
k=0

{Xk ∈ Bk}

)
= Pν,π

(
t⋂

k=0

{Xk ∈ Bk}

)
Pν,π (Xt+1 ∈ Bt+1) =

t+1∏
k=0

Pν,π (Xk ∈ Bk) .

Proposition 5.4. If the policy π implements explore-then-commit with m ∈ N+ exploration steps and ν is a
1-subgaussian stochastic bandit, then Xt − µν

at
is 1-subgaussian for every t ≤ mn, where at = ((t− 1) mod n) + 1.

Proof. For every a ∈ A, recall that the random variable Za on the probability triple (R,B(R), Pa) is 1-subgaussian,
where Za(x) = x− µν

a. By Proposition 5.2, the law of Xt is Pat for every t ∈ {1, . . . ,mn}. For every λ ∈ R,

Eν,π
(
eλ(Xt−µν

at
)
)
=

∫
R
eλ(xt−µν

at
)Pat(dxt) =

∫
R
eλZat (xt)Pat(dxt) = Eat

(
eλZat

)
≤ e

λ2

2 .

Theorem 5.1. If the policy π implements explore-then-commit with m ∈ N+ exploration steps and ν is a 1-
subgaussian stochastic bandit, for every t ∈ N+ such that t ≥ mn,

Rν,π
t ≤

(
m

n∑
a=1

∆ν
a

)
+ (t−mn)

n∑
a=1

∆ν
ae

−m(∆ν
a)2

4 .

Proof. For every k ∈ N+, let Ak = πk(X0, . . . , Xk−1). For every a ∈ A,

Tπ
mn,a(ω) =

mn∑
k=1

I{Ak=a}(ω) =

mn∑
k=1

I{((k−1) mod n)+1=a}(ω) = m.

Theorem 4.2 completes the proof for the case where t = mn, since (t−mn) = 0 and

Rν,π
mn =

n∑
a=1

∆ν
aEν,π

(
Tπ
mn,a

)
= m

n∑
a=1

∆ν
a.

Consider a time step t ∈ N+ such that t > mn. In that case,

Tπ
t,a(ω) =

mn∑
k=1

I{Ak=a}(ω) +

t∑
k=mn+1

I{Ak=a}(ω) = m+ (t−mn)I{a=argmaxa′ Mπ
mn,a′}(ω).

Because ties are possible, for every a ∈ A and t > mn,

Eν,π(Tπ
t,a) = m+ (t−mn)Pν,π

(
a = argmax

a′
Mπ

mn,a′

)
≤ m+ (t−mn)Pν,π

(
Mπ

mn,a ≥ sup
a′

Mπ
mn,a′

)
.

Let a∗ denote an action such that µν
a∗ = µν

∗ . For every a ∈ A and t > mn,

Pν,π

(
Mπ

mn,a ≥ sup
a′

Mπ
mn,a′

)
= Pν,π

(⋂
a′

{Mπ
mn,a ≥ Mπ

mn,a′}

)
≤ Pν,π

(
Mπ

mn,a ≥ Mπ
mn,a∗

)
.

For every a ∈ A and t > mn, by adding ∆ν
a to both sides of the inequality that defines an event,

Pν,π

(
Mπ

mn,a ≥ sup
a′

Mπ
mn,a′

)
≤ Pν,π

(
Mπ

mn,a −Mπ
mn,a∗ ≥ 0

)
= Pν,π

(
Mπ

mn,a −Mπ
mn,a∗ + (µν

a∗ − µν
a) ≥ ∆ν

a

)
,

so that

Pν,π

(
Mπ

mn,a ≥ sup
a′

Mπ
mn,a′

)
≤ Pν,π

((
Mπ

mn,a − µν
a

)
−
(
Mπ

mn,a∗ − µν
a∗

)
≥ ∆ν

a

)
.
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For every a ∈ A, by the definition of the average reward Mπ
mn,a that policy π observes for a by time mn,

Mπ
mn,a(ω)− µν

a =

(
1

m

m−1∑
i=0

Xa+in(ω)

)
− 1

m

m−1∑
i=0

µν
a =

1

m

m−1∑
i=0

(Xa+in(ω)− µν
a) .

Proposition 5.4 guarantees that Xa+in−µν
a is 1-subgaussian for every a ∈ {1, . . . , n} and i ∈ {0, . . . ,m−1}, since

((a+in−1) mod n)+1 = a. Proposition 5.3 guarantees that Xa, Xa+n, . . . , Xa+(m−1)n are independent. Therefore,∑m−1
i=0 (Xa+in − µν

a) is
√
m-subgaussian, which implies that Mπ

mn,a − µν
a is 1/

√
m-subgaussian. Since this applies

for every a ∈ A, we also conclude that Mπ
mn,a∗ −µν

a∗ is 1/
√
m-subgaussian. For every a ∈ A, note that Mπ

mn,a −µν
a

is σ(Xa, Xa+n, . . . , Xa+(m−1)n)-measurable. By Proposition 5.3, if a ̸= a∗, then (Mπ
mn,a−µν

a) and −(Mπ
mn,a∗ −µν

a∗)

are independent, which further implies that
(
Mπ

mn,a − µν
a

)
−
(
Mπ

mn,a∗ − µν
a∗

)
is
√
2/m-subgaussian. If a = a∗, then(

Mπ
mn,a − µν

a

)
−
(
Mπ

mn,a∗ − µν
a∗

)
= 0, and therefore also

√
2/m-subgaussian. By Theorem 3.1, since ∆ν

a ≥ 0,

Pν,π

(
Mπ

mn,a ≥ sup
a′

Mπ
mn,a′

)
≤ e

− (∆ν
a)2

2(
√

2/m)
2

= e−
m(∆ν

a)2

4 .

By returning to a previous inequality, for every a ∈ A and t > mn,

Eν,π(Tπ
t,a) ≤ m+ (t−mn)e−

m(∆ν
a)2

4 .

For every t > mn, Theorem 4.2 once again completes the proof, since

Rν,π
t =

n∑
a=1

∆ν
aEν,π

(
Tπ
t,a

)
≤

n∑
a=1

∆ν
a

(
m+ (t−mn)e−

m(∆ν
a)2

4

)
=

(
m

n∑
a=1

∆ν
a

)
+ (t−mn)

n∑
a=1

∆ν
ae

−m(∆ν
a)2

4 .

In order to minimize the regret, the previous result suggests that the exploration factor m should balance
between the first term (non-decreasing with respect to m) and the second term (non-increasing with respect to m).
This is a specific instance of the so-called exploration-exploitation trade-off.

Proposition 5.5. Consider a 1-subgaussian stochastic bandit ν = (P1, P2). Let ∆ = max(∆ν
1 ,∆

ν
2), and suppose

that ∆ > 0. For some t ∈ N+, let m = 1 if t ≤ 4/∆2 and let m =
⌈

4
∆2 log

(
t∆2

4

)⌉
if t > 4/∆2. If π is a policy that

implements explore-then-commit with m exploration steps, then

Rν,π
t ≤ ∆+

4√
e

√
t.

Proof. First, consider some t ∈ N+ such that t ≤ 4/∆2, so that m = 1. By Theorem 4.2, since ∆ ≤ 2/
√
t,

Rν,π
t =

2∑
a=1

∆ν
aEν,π

(
Tπ
t,a

)
≤ ∆

2∑
a=1

Eν,π
(
Tπ
t,a

)
= ∆Eν,π

(
2∑

a=1

Tπ
t,a

)
= t∆ ≤ t

2√
t
= 2

√
t.

Second, consider some t ∈ N+ such that t > 4/∆2, so that m =
⌈

4
∆2 log

(
t∆2

4

)⌉
. Note that m ≥ 1 and

m∆ = ∆

⌈
4

∆2
log

(
t∆2

4

)⌉
≤ ∆

(
1 +

4

∆2
log

(
t∆2

4

))
= ∆+

4

∆
log

(
t∆2

4

)
.

Consider the case where t < 2m. By Theorem 4.2,

Rν,π
t = ∆ν

1Eν,π
(
Tπ
t,1

)
+∆ν

2Eν,π
(
Tπ
t,2

)
≤ m∆.

Now consider the case where t ≥ 2m. By Theorem 5.1,

Rν,π
t ≤ m∆+ (t− 2m)∆e−

m∆2

4 ≤ m∆+ t∆e−
m∆2

4 .
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Because the function f : (0,∞) → (0,∞) given by f(x) = t∆e−
x∆2

4 is decreasing,

t∆e−
m∆2

4 = f(m) = f

(⌈
4

∆2
log

(
t∆2

4

)⌉)
≤ f

(
4

∆2
log

(
t∆2

4

))
= t∆e

− log
(

t∆2

4

)
=

4

∆
.

Therefore, for every t ∈ N+ such that t > 4/∆2,

Rν,π
t ≤ m∆+ t∆e−

m∆2

4 ≤ ∆+
4

∆
log

(
t∆2

4

)
+

4

∆
.

Consider the function g : (0,∞) → R given by g(x) = x log(4t/x2)+x, so that g(4/∆) = (4/∆) log
(
t∆2/4

)
+4/∆.

Note that g(x) = x log(4t)− 2x log(x) + x, g′(x) = log(4t)− 2 log(x)− 1, and g′′(x) = −2/x. The second derivative
test guarantees that g(x) ≤ g

(
2
√
t/
√
e
)
= 4

√
t/
√
e for every x ∈ (0,∞). Therefore, for every t ∈ N+,

Rν,π
t ≤ ∆+

4√
e

√
t.

The previous result suggests a specific number of exploration steps for a policy that implements explore-then-
commit. However, this policy is only suitable for a fixed horizon and a fixed suboptimality gap.
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6 Restarts
Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a
policy π = (πt | t ∈ N+), and let (Ω,F ,Pν,π) be a canonical triple for the stochastic bandit ν under the policy π.

Definition 6.1. A policy π restarts to the policy π′ after t ∈ N steps if, for all k ∈ N+ and (x0, . . . , xt+k−1) ∈ Rt+k,

πt+k(x0, . . . , xt+k−1) = π′
k(0, xt+1, . . . , xt+k−1).

Proposition 6.1. If a policy π restarts to the policy π′ after t ∈ N steps, then

Pν,π (Xt+1 ∈ B1, . . . , Xt+k ∈ Bk) = Pν,π′
(X1 ∈ B1, . . . , Xk ∈ Bk)

for every k ∈ N+ and B1, . . . , Bk ∈ B(R).

Proof. Consider the case where k = 1. For every B1 ∈ B(R),

Pν,π (Xt+1 ∈ B1) = Eν,π
(
Eν,π

(
I{Xt+1∈B1} | X0, . . . Xt

))
= Eν,π

(
PAt+1

(B1)
)
,

where At+1 = πt+1(X0, . . . , Xt) = π′
1(0). Because At+1 is a constant function,

Pν,π (Xt+1 ∈ B1) = Pπ′
1(0)

(B1) = Eν,π′ (
Pπ′

1(0)
(B1)

)
= Eν,π′ (

Pπ′
1(X0)(B1)

)
= Pν,π′

(X1 ∈ B1) .

In order to employ induction, suppose that there is a k ∈ N+ such that, for every B1, . . . , Bk ∈ B(R),

Pν,π (Xt+1 ∈ B1, . . . , Xt+k ∈ Bk) = Pν,π′
(X1 ∈ B1, . . . , Xk ∈ Bk) .

In that case, there is a probability measure L : B(Rk) → [0, 1] on the measurable space (Rk,B(Rk)) such that

L(B1 × · · · ×Bk) = Pν,π (Xt+1 ∈ B1, . . . , Xt+k ∈ Bk) = Pν,π′
(X1 ∈ B1, . . . , Xk ∈ Bk)

for every B1, . . . , Bk ∈ B(R), so that L is the joint law of (Xt+1, . . . , Xt+k) and the joint law of (X1, . . . , Xk).
For every B1, . . . , Bk+1 ∈ B(R),

Pν,π (Xt+1 ∈ B1, . . . , Xt+k+1 ∈ Bk+1) = Eν,π
(
Eν,π

(
I{Xt+1∈B1,...,Xt+k∈Bk}I{Xt+k+1∈Bk+1} | X0, . . . , Xt+k

))
,

Pν,π′
(X1 ∈ B1, . . . , Xk+1 ∈ Bk+1) = Eν,π′

(
Eν,π′ (

I{X1∈B1,...,Xk∈Bk}I{Xk+1∈Bk+1} | X0, . . . , Xk

))
.

By taking out what is known,

Pν,π (Xt+1 ∈ B1, . . . , Xt+k+1 ∈ Bk+1) = Eν,π
(
I{Xt+1∈B1,...,Xt+k∈Bk}PAt+k+1

(Bk+1)
)
,

Pν,π′
(X1 ∈ B1, . . . , Xk+1 ∈ Bk+1) = Eν,π′

(
I{X1∈B1,...,Xk∈Bk}PA′

k+1
(Bk+1)

)
,

where At+k+1 = πt+k+1(X0, . . . , Xt+k) and A′
k+1 = π′

k+1(0, X1, . . . , Xk). Since At+k+1 = π′
k+1(0, Xt+1, . . . , Xt+k),

Pν,π (Xt+1 ∈ B1, . . . , Xt+k+1 ∈ Bk+1) = Eν,π (f(Xt+1, . . . , Xt+k)) ,

Pν,π′
(X1 ∈ B1, . . . , Xk+1 ∈ Bk+1) = Eν,π′

(f(X1, . . . , Xk)) ,

where the function f : Rk → [0, 1] is given by

f(x) =

(
k∏

i=1

IBi
(xi)

)
Pπ′

k+1(0,x1,...,xk)(Bk+1).

Since L is the joint law of (Xt+1, . . . , Xt+k) and the joint law of (X1, . . . , Xk),

Pν,π (Xt+1 ∈ B1, . . . , Xt+k+1 ∈ Bk+1) =

∫
Rk

f(x)L(dx) = Pν,π′
(X1 ∈ B1, . . . , Xk+1 ∈ Bk+1) .
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Proposition 6.2. If a policy π restarts to the policy π′ after t ∈ N+ steps, for every h ∈ N+,

Rν,π
t+h = Rν,π

t +Rν,π′

h .

Proof. For every h ∈ N+, by definition of the regret Rν,π
t+h,

Rν,π
t+h = (t+ h)µν

∗ −
t+h∑
k=1

Eν,π(Xk) =

(
tµν

∗ −
t∑

k=1

Eν,π(Xk)

)
+

(
hµν

∗ −
t+h∑

k=t+1

Eν,π(Xk)

)
.

By definition of the regret Rν,π
t and changing the indices of the second summation,

Rν,π
t+h = Rν,π

t +

(
hµν

∗ −
h∑

k=1

Eν,π(Xt+k)

)
.

By Proposition 6.1, we know that Pν,π(Xt+k ∈ B) = Pν,π′
(Xk ∈ B) for every k ∈ N+ and B ∈ B(R). Therefore,

Eν,π(Xt+k) = Eν,π′
(Xk) for every k ∈ N+ and

Rν,π
t+h = Rν,π

t +

(
hµν

∗ −
h∑

k=1

Eν,π′
(Xk)

)
= Rν,π

t +Rν,π′

h .

Definition 6.2. Consider a sequence of policies (π(k) | k ∈ N+) and a sequence of positive natural numbers
(hk ∈ N+ | k ∈ N+). For every k ∈ N+, suppose that the policy π(k) restarts to the policy π(k+1) after hk steps.
If π = π(1), we say that policy π restarts to the sequence of policies (π(k) | k ∈ N+) given the sequence of relative
steps (hk | k ∈ N+).

Proposition 6.3. If the policy π restarts to the sequence of policies (π(k) | k ∈ N+) given the sequence of relative
steps (hk ∈ N+ | k ∈ N+), for every l ∈ N+,

Rν,π∑l
k=1 hk

=

l∑
k=1

Rν,π(k)

hk
.

Proof. If l = 1, then Rν,π
h1

= Rν,π(1)

h1
. By Proposition 6.2, if l > 1, then

Rν,π∑l
k=1 hk

= Rν,π(1)∑l
k=1 hk

= Rν,π(1)

h1
+Rν,π(2)∑l

k=2 hk
= . . . =

l∑
k=1

Rν,π(k)

hk
.

Proposition 6.4. If the policy π restarts to the sequence of policies (π(k) | k ∈ N+) given the sequence of relative
steps (hk ∈ N+ | k ∈ N+) and there is a function f : N+ → [0,∞) such that Rν,π(k)

hk
≤ f(hk) for every k ∈ N+, then

Rν,π
t ≤

pt∑
k=1

f(hk)

for every t ∈ N+, where pt = min{l ∈ N+ |
∑l

k=1 hk ≥ t} is the number of restarts by time step t.

Proof. For every t ∈ N+, let pt = min{l ∈ N+ |
∑l

k=1 hk ≥ t}, so that
∑pt

k=1 hk ≥ t. By Proposition 6.3,

Rν,π
t ≤ Rν,π∑pt

k=1 hk
=

pt∑
k=1

Rν,π(k)

hk
≤

pt∑
k=1

f(hk).

The previous result can be used to provide a regret upper bound based on the regret upper bounds of policies
suitable for fixed horizons. This is exemplified by the so-called doubling trick, which is presented below.
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Proposition 6.5. If the policy π restarts to the sequence of policies (π(k) | k ∈ N+) given the sequence of relative
steps (2k−1 | k ∈ N+) and Rν,π(k)

2k−1 ≤
√
2k−1 for every k ∈ N+, then, for every t ∈ N+,

Rν,π
t ≤ 2(1 +

√
2)
√
t.

Proof. For every t ∈ N+, let pt = min{l ∈ N+ |
∑l

k=1 2
k−1 ≥ t}, so that pt = ⌈log2(t+ 1)⌉. By Proposition 6.4,

Rν,π
t ≤

pt∑
k=1

√
2k−1 =

pt∑
k=1

(
√
2)k−1 =

(
√
2)pt − 1√
2− 1

≤ (
√
2)pt

√
2− 1

.

Since pt ≤ log2(t+ 1) + 1 = log2(t+ 1) + log2(2) = log2 2(t+ 1) and 1 + 1/t ≤ 2,

Rν,π
t ≤ (

√
2)log2 2(t+1)

√
2− 1

=

√
2(t+ 1)√
2− 1

=
1√
2− 1

√
2t

(
1 +

1

t

)
≤

√
4t√

2− 1
=

2
√
t√

2− 1
.

Note that doubling the horizon after each restart is not generally appropriate.
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7 Action times
Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a policy
π = (πt | t ∈ N+), and a canonical triple (Ω,F ,Pν,π) for the stochastic bandit ν under the policy π. Furthermore,
let (Ft)t denote the natural filtration of the reward process (Xt | t ∈ N), so that Ft = σ(X0, . . . , Xt) for every t ∈ N.

Definition 7.1. The time Cπ
m,a : Ω → N+ ∪ {∞} until policy π selects a ∈ A exactly m ∈ N+ times is given by

Cπ
m,a(ω) = inf

({
t ∈ N+ | Tπ

t,a(ω) ≥ m
})

.

If t ∈ N+ and Cπ
m,a(ω) = t, then πt(X0(ω), . . . , Xt−1(ω)) = a and Cπ

m+1,a(ω) > t.

Proposition 7.1. The time Cπ
m,a : Ω → N+ ∪ {∞} until π selects a ∈ A exactly m ∈ N+ times is a stopping time.

Proof. Recall that Cπ
m,a is a stopping time if {Cπ

m,a ≤ t} ∈ Ft for every t ∈ N∪{∞}. If t = 0, then {Cπ
m,a ≤ 0} = ∅.

If t ∈ N+, then {Cπ
m,a ≤ t} = {Tπ

t,a ≥ m} and {Tπ
t,a ≥ m} ∈ Ft−1. If t = ∞, then {Cπ

m,a ≤ ∞} = Ω.

Definition 7.2. For every a ∈ A and m ∈ N+, the function XCπ
m,a

: Ω → R is given by

XCπ
m,a

(ω) =

{
XCπ

m,a(ω)(ω), if Cπ
m,a(ω) < ∞,

0, if Cπ
m,a(ω) = ∞.

Recall that XCπ
m,a

is F-measurable because (Xt | t ∈ N) is adapted to (Ft)t and Cπ
m,a is a stopping time.

Definition 7.3. For every a ∈ A, the constant policy π(a) = (π
(a)
t | t ∈ N+) is given by π

(a)
t = a for every t ∈ N+.

Proposition 7.2. For every a ∈ A, m ∈ N+, and B1, . . . , Bm ∈ B(R),

Pν,π(a)

(X1 ∈ B1, . . . , Xm ∈ Bm) =

m∏
k=1

Pa(Bk).

Proof. For every a ∈ A, m ∈ N+, and B1, . . . , Bm ∈ B(R), if the empty product denotes one,

Pν,π(a)

(X1 ∈ B1, . . . , Xm ∈ Bm) = Eν,π(a)

(
Eν,π(a)

((
m−1∏
k=1

I{Xk∈Bk}

)
I{Xm∈Bm} | X0, . . . , Xm−1

))
.

By taking out what is known and using the fact that π
(a)
m (X0, . . . , Xm−1) = a,

Pν,π(a)

(X1 ∈ B1, . . . , Xm ∈ Bm) = Pa(Bm)Eν,π(a)

(
m−1∏
k=1

I{Xk∈Bk}

)
.

Therefore, Pν,π(a)

(X1 ∈ B1) = Pa(B1). Suppose that the proposition is true for some m− 1 ∈ N+. In that case,

Pν,π(a)

(X1 ∈ B1, . . . , Xm ∈ Bm) = Pa(Bm)Pν,π(a)

(X1 ∈ B1, . . . , Xm−1 ∈ Bm−1) =

m∏
k=1

Pa(Bk).

Proposition 7.3. For every a ∈ A, m ∈ N+, and t ∈ N+, if h : R → R is B(R)-measurable, then the function
I{Cπ

m,a=t}
∏m−1

k=1 h(XCπ
k,a

) is Ft−1-measurable.

Proof. For every a ∈ A, k ∈ N+, and tk ∈ N+, note that {Cπ
k,a = tk} = {Cπ

k,a ≤ tk} ∩ {Cπ
k,a ≤ tk − 1}c, so that

{Cπ
k,a = tk} ∈ Ftk−1. For every ω ∈ Ω, m ∈ N+, and t ∈ N+, if Cπ

m,a(ω) = t, then Cπ
1,a(ω) < · · · < Cπ

m,a(ω) = t, so

I{Cπ
m,a=t}

m−1∏
k=1

h(XCπ
k,a

) = I{Cπ
m,a=t}

(
m−1∏
k=1

∑
tk<t

I{Cπ
k,a=tk}h(Xtk)

)
.

If k ∈ N+ and tk ≤ t, then I{Cπ
k,a=tk} is Ft−1-measurable. If tk < t, then h(Xtk) is also Ft−1-measurable.
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Proposition 7.4. For every a ∈ A and m ∈ N+, if a function h : R → [0,∞] is ν-integrable, then

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

h(XCπ
k,a

)

)
≤ Eν,π(a)

(
m∏

k=1

h(Xk)

)

whenever Eν,π
(
I{Cπ

m,a=t}
∏m

k=1 h(XCπ
k,a

)
)
< ∞ for every t ∈ N+.

Proof. For every a ∈ A and t ∈ N+, if h is ν-integrable, then Eν,π(a)

(h(Xt)) < ∞. Therefore, for every m ∈ N+,

Eν,π(a)

(
m∏

k=1

h(Xk)

)
=

m∏
k=1

Eν,π(a)

(h(Xk)) =

m∏
k=1

∫
R
h(x) Pa(dx) =

(∫
R
h(x) Pa(dx)

)m

,

which uses the fact that X1, . . . , Xm are independent and identically distributed with respect to Pν,π(a)

.
For every a ∈ A and m ∈ N+, if the empty product denotes one,

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

h(XCπ
k,a

)

)
=
∑
t∈N+

Eν,π

((
I{Cπ

m,a=t}

m−1∏
k=1

h(XCπ
k,a

)

)
h(Xt)

)
.

Since each expectation on the right side above is finite by assumption, by taking out what is known,

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

h(XCπ
k,a

)

)
=
∑
t∈N+

Eν,π

(
I{Cπ

m,a=t}

m−1∏
k=1

h(XCπ
k,a

)Eν,π (h(Xt) | X0, . . . , Xt−1)

)
.

By Proposition 4.3, if At = πt(X0, . . . , Xt−1), then almost surely

Eν,π (h(Xt) | X0, . . . , Xt−1) =
∑
a′

I{At=a′}

∫
R
h(x) Pa′(dx).

For every ω ∈ Ω, recall that Cπ
m,a(ω) = t implies At(ω) = a. Therefore, almost surely,

I{Cπ
m,a=t}Eν,π (h(Xt) | X0, . . . , Xt−1) = I{Cπ

m,a=t}

∫
R
h(x) Pa(dx).

By returning to a previous equation,

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

h(XCπ
k,a

)

)
=

(∫
R
h(x) Pa(dx)

)
Eν,π

(
I{Cπ

m,a<∞}

m−1∏
k=1

h(XCπ
k,a

)

)
.

The proposition is true for m = 1, since

Eν,π
(
I{Cπ

1,a<∞}h(XCπ
1,a

)
)
=

(∫
R
h(x) Pa(dx)

)
Pν,π

(
Cπ

1,a < ∞
)
≤
∫
R
h(x) Pa(dx).

If the proposition is true for some m− 1 ∈ N+, because Cπ
m,a(ω) < ∞ implies Cπ

m−1,a(ω) < ∞ for every ω ∈ Ω,

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

h(XCπ
k,a

)

)
≤
(∫

R
h(x) Pa(dx)

)
Eν,π

(
I{Cπ

m−1,a<∞}

m−1∏
k=1

h(XCπ
k,a

)

)
≤
(∫

R
h(x) Pa(dx)

)m

.

Proposition 7.5. If ν is a 1-subgaussian stochastic bandit and λ ∈ R, then the function h : R → [0,∞] given by
h(x) = eλx is ν-integrable. Furthermore, for every a ∈ A, m ∈ N+, and t ∈ N+,

Eν,π

(
I{Cπ

m,a=t}

m∏
k=1

h(XCπ
k,a

)

)
< ∞.
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Proof. If ν is a 1-subgaussian stochastic bandit, recall that the random variable Za on the probability triple
(R,B(R), Pa) given by Za(x) = x− µν

a is 1-subgaussian for every a ∈ A. For every λ ∈ R,∫
R
eλx Pa(dx) =

∫
R
eλ(Za(x)+µν

a) Pa(dx) = eλµ
ν
a

∫
R
eλZa(x) Pa(dx) ≤ eλµ

ν
ae

λ2

2 .

By Proposition 4.1, there is a constant c ∈ [0,∞) such that µν
a ∈ [−c, c] for every a ∈ A. Therefore, the function

h : R → [0,∞] given by h(x) = eλx is ν-integrable.
Let a ∈ A and t ∈ N+. We will use induction to show that, for every m ∈ N+ and λ ∈ R,

Eν,π
(
I{Cπ

m,a≤t}e
λ
∑m

k=1 XCπ
k,a

)
< ∞.

Consider the case where m = 1. For every λ ∈ R, since Eν,π(eλXt′ ) < ∞ for every t′ ∈ N+,

Eν,π
(
I{Cπ

1,a≤t}e
λXCπ

1,a

)
=
∑
t′≤t

Eν,π
(
I{Cπ

1,a=t′}e
λXt′

)
≤
∑
t′≤t

Eν,π
(
eλXt′

)
< ∞.

Suppose that there is an m− 1 ∈ N+ such that, for every λ′ ∈ R,

Eν,π

(
I{Cπ

m−1,a≤t}e
λ′ ∑m−1

k=1 XCπ
k,a

)
< ∞.

For every λ ∈ R, since I{Cπ
m,a≤t} = I{Cπ

m−1,a≤t}I{Cπ
m,a≤t},

Eν,π
(
I{Cπ

m,a≤t}e
λ
∑m

k=1 XCπ
k,a

)
= Eν,π

((
I{Cπ

m−1,a≤t}e
λ
∑m−1

k=1 XCπ
k,a

)(
I{Cπ

m,a≤t}e
λXCπ

m,a

))
.

If λ′ = 2λ, by the inductive hypothesis,

Eν,π

((
I{Cπ

m−1,a≤t}e
λ
∑m−1

k=1 XCπ
k,a

)2
)

= Eν,π

(
I{Cπ

m−1,a≤t}e
λ′ ∑m−1

k=1 XCπ
k,a

)
< ∞.

Since Eν,π(eλ
′Xt′ ) < ∞ for every t′ ∈ N+,

Eν,π

((
I{Cπ

m,a≤t}e
λXCπ

m,a

)2)
= Eν,π

(
I{Cπ

m,a≤t}e
λ′XCπ

m,a

)
=
∑
t′≤t

Eν,π
(
I{Cπ

m,a=t′}e
λ′Xt′

)
≤
∑
t′≤t

Eν,π
(
eλ

′Xt′
)
< ∞.

By the Schwarz inequality, for every λ ∈ R,

Eν,π
(
I{Cπ

m,a≤t}e
λ
∑m

k=1 XCπ
k,a

)
< ∞.

Therefore, for every a ∈ A, m ∈ N+, t ∈ N+, and λ ∈ R, if h : R → [0,∞] is given by h(x) = eλx,

Eν,π

(
I{Cπ

m,a=t}

m∏
k=1

h(XCπ
k,a

)

)
≤ Eν,π

(
I{Cπ

m,a≤t}

m∏
k=1

h(XCπ
k,a

)

)
= Eν,π

(
I{Cπ

m,a≤t}e
λ
∑m

k=1 XCπ
k,a

)
< ∞.

Proposition 7.6. If ν is a 1-subgaussian stochastic bandit, then, for every a ∈ A, m ∈ N+, and λ ∈ R,

Eν,π
(
I{Cπ

m,a<∞}e
λ
m

∑m
k=1(XCπ

k,a
−µν

a)
)
≤ e

λ2

2m .

Proof. For some m ∈ N+ and λ ∈ R, consider the function h : R → [0,∞] given by h(x) = e
λ
mx, which is ν-integrable

by Proposition 7.5. Recall that, for every a ∈ A and t ∈ N+,

Eν,π

(
I{Cπ

m,a=t}

m∏
k=1

h(XCπ
k,a

)

)
< ∞.
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For every a ∈ A, consider the function ha : R → [0,∞] given by ha(x) = e
λ
m (x−µν

a) = h(x)e−
λ
mµν

a . Since h is
ν-integrable, ha is also ν-integrable. Furthermore, for every t ∈ N+,

Eν,π

(
I{Cπ

m,a=t}

m∏
k=1

ha(XCπ
k,a

)

)
= Eν,π

(
I{Cπ

m,a=t}

m∏
k=1

h(XCπ
k,a

)

)
e−λµν

a < ∞.

By Proposition 7.4,

Eν,π

(
I{Cπ

m,a<∞}

m∏
k=1

ha(XCπ
k,a

)

)
≤ Eν,π(a)

(
m∏

k=1

ha(Xk)

)
.

By rewriting the previous inequality, for every a ∈ A, m ∈ N+, and λ ∈ R,

Eν,π
(
I{Cπ

m,a<∞}e
λ
m

∑m
k=1(XCπ

k,a
−µν

a)
)
≤ Eν,π(a)

(
e

λ
m

∑m
k=1(Xk−µν

a)
)
.

Since X1 − µν
a, . . . , Xm − µν

a are independent 1-subgaussian random variables with respect to Pν,π(a)

, the ran-
dom variable

∑m
k=1(Xk − µν

a) is
√
m-subgaussian, which implies that (1/m)

∑m
k=1(Xk − µν

a) is 1/
√
m-subgaussian.

Therefore, by the definition of a 1/
√
m-subgaussian random variable,

Eν,π
(
I{Cπ

m,a<∞}e
λ
m

∑m
k=1(XCπ

k,a
−µν

a)
)
≤ Eν,π(a)

(
eλ

1
m

∑m
k=1(Xk−µν

a)
)
≤ e

λ2

2m .

Proposition 7.7. If ν is a 1-subgaussian stochastic bandit, then, for every a ∈ A, m ∈ N+, and ϵ ≥ 0,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≤ −ϵ

)
≤ e−

mϵ2

2 ,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥ ϵ

)
≤ e−

mϵ2

2 .

Proof. For every a ∈ A, m ∈ N+, ϵ ∈ R, and λ ≥ 0,

I{Cπ
m,a<∞}e

− λ
m

∑m
k=1(XCπ

k,a
−µν

a) ≥ I{Cπ
m,a<∞}e

− λ
m

∑m
k=1(XCπ

k,a
−µν

a)I{− 1
m

∑m
k=1(XCπ

k,a
−µν

a)≥ϵ},

I{Cπ
m,a<∞}e

λ
m

∑m
k=1(XCπ

k,a
−µν

a) ≥ I{Cπ
m,a<∞}e

λ
m

∑m
k=1(XCπ

k,a
−µν

a)I{ 1
m

∑m
k=1(XCπ

k,a
−µν

a)≥ϵ}.

Since the function g : R → [0,∞] given by g(x) = eλx is non-decreasing for λ ≥ 0,

I{Cπ
m,a<∞}e

− λ
m

∑m
k=1(XCπ

k,a
−µν

a) ≥ I{Cπ
m,a<∞}e

λϵI{− 1
m

∑m
k=1(XCπ

k,a
−µν

a)≥ϵ},

I{Cπ
m,a<∞}e

λ
m

∑m
k=1(XCπ

k,a
−µν

a) ≥ I{Cπ
m,a<∞}e

λϵI{ 1
m

∑m
k=1(XCπ

k,a
−µν

a)≥ϵ}.

By taking expectations of both sides of the inequalities above,

Eν,π
(
I{Cπ

m,a<∞}e
− λ

m

∑m
k=1(XCπ

k,a
−µν

a)
)
≥ eλϵPν,π

(
Cπ

m,a < ∞,− 1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥ ϵ

)
,

Eν,π
(
I{Cπ

m,a<∞}e
λ
m

∑m
k=1(XCπ

k,a
−µν

a)
)
≥ eλϵPν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥ ϵ

)
.

By Proposition 7.6, for every a ∈ A, m ∈ N+, and λ ≥ 0,

Eν,π
(
I{Cπ

m,a<∞}e
− λ

m

∑m
k=1(XCπ

k,a
−µν

a)
)
≤ e

(−λ)2

2m ,

Eν,π
(
I{Cπ

m,a<∞}e
λ
m

∑m
k=1(XCπ

k,a
−µν

a)
)
≤ e

λ2

2m .
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By rewriting the previous inequalities,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≤ −ϵ

)
≤ e

λ2

2m−λϵ,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥ ϵ

)
≤ e

λ2

2m−λϵ.

For every ϵ ≥ 0, let λ = ϵm, so that λ ≥ 0. In that case,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≤ −ϵ

)
≤ e−

mϵ2

2 ,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥ ϵ

)
≤ e−

mϵ2

2 .

Proposition 7.8. If ν is a 1-subgaussian stochastic bandit, then, for every a ∈ A, m ∈ N+, and δ ∈ (0, 1],

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≤ −

√
2 log(1/δ)

m

)
≤ δ,

Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(XCπ
k,a

− µν
a) ≥

√
2 log(1/δ)

m

)
≤ δ.

Proof. Let δ ∈ (0, 1]. If ϵ =
√
2 log(1/δ)/m, then ϵ ≥ 0 and δ = e−

mϵ2

2 , which implies the two inequalities.
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8 Upper confidence bounds
Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a
policy π = (πt | t ∈ N+), and a canonical triple (Ω,F ,Pν,π) for the stochastic bandit ν under the policy π.

Definition 8.1. The upper confidence bound Uπ,δ
t,a : Ω → R that policy π induces for action a ∈ A by time step

t ∈ N+ with error δ ∈ (0, 1) is given by

Uπ,δ
t,a (ω) = Mπ

t,a(ω) +

√
2 log(1/δ)

Tπ
t,a(ω)

whenever Tπ
t,a(ω) > 0. Intuitively, the role of Uπ,δ

t,a is to overestimate µν
a with high probability when δ is small.

Proposition 8.1. The upper confidence bound Uπ,δ
t,a : Ω → R that policy π induces for action a ∈ A by time step

t ∈ N+ with error δ ∈ (0, 1) is given by

Uπ,δ
t,a (ω) =

1

m

m∑
k=1

XCπ
k,a

(ω) +

√
2 log(1/δ)

m

whenever Tπ
t,a(ω) = m for some m ∈ N+.

Proof. Let ω ∈ Ω, a ∈ A, t ∈ N+, and m ∈ N+. If Tπ
t,a(ω) = m, then Cπ

k,a(ω) ≤ t for every k ≤ m, so that

m∑
k=1

XCπ
k,a

(ω) =

m∑
k=1

XCπ
k,a

(ω)I{Cπ
k,a≤t}(ω) =

m∑
k=1

XCπ
k,a

(ω)

t∑
t′=1

I{Cπ
k,a=t′}(ω) =

t∑
t′=1

Xt′(ω)

m∑
k=1

I{Cπ
k,a=t′}(ω).

Note that {Cπ
k,a = t′} ∩ {Cπ

k′,a = t′} = ∅ if k ̸= k′ and t′ ∈ N+.
Let t′ ≤ t and At′ = πt′(X0, . . . , Xt′−1). Since At′(ω) = a if and only Cπ

k,a(ω) = t′ for some k ≤ m,

m∑
k=1

XCπ
k,a

(ω) =

t∑
t′=1

Xt′(ω)I⋃m
k=1{Cπ

k,a=t′}(ω) =

t∑
t′=1

Xt′(ω)I{At′=a}(ω).

Therefore, for every δ ∈ (0, 1),

Uπ,δ
t,a (ω) =

1

Tπ
t,a(ω)

t∑
k=1

Xk(ω)I{Ak=a}(ω) +

√
2 log(1/δ)

Tπ
t,a(ω)

=
1

m

m∑
k=1

XCπ
k,a

(ω) +

√
2 log(1/δ)

m
.

Definition 8.2. A policy π implements upper confidence bounds with error δ ∈ (0, 1) if, for every t ∈ N+,

πt(X0, . . . , Xt−1) =

{
t, if t ≤ n,

argmaxa U
π,δ
t−1,a, if t > n.

Note that Uπ,δ
t−1,a is well-defined for every time step t > n and action a ∈ A.

Theorem 8.1. If ν is a 1-subgaussian stochastic bandit and the policy π implements upper confidence bounds
with error δ = 1/t2 for some t ∈ N+, then

Rν,π
t ≤

(
3

n∑
a=1

∆ν
a

)
+

∑
a|∆ν

a>0

16 log(t)

∆ν
a

.

Proof. If t ≤ n, then Tπ
t,a ≤ 1 for every a ∈ A, so that Rν,π

t =
∑

a ∆
ν
aEν,π

(
Tπ
t,a

)
≤
∑

a ∆
ν
a.

Let t > n and consider an action a ∈ A such that ∆ν
a > 0. For every m ∈ N+, since Tπ

t,a ≤ t,

Eν,π
(
Tπ
t,a

)
= Eν,π

(
I{Tπ

t,a>m}T
π
t,a

)
+ Eν,π

(
I{Tπ

t,a≤m}T
π
t,a

)
≤ tPν,π

(
Tπ
t,a > m

)
+m.
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Let δ = 1/t2 and m = ⌈8 log(1/δ)/(∆ν
a)

2⌉, so that m ∈ N+. Furthermore, consider the event E given by

E =

{
1

m

m∑
k=1

XCπ
k,a

+

√
2 log(1/δ)

m
< µν

∗

}
.

Because the events E and Ec are disjoint,

Pν,π
(
Tπ
t,a > m

)
= Pν,π

({
Tπ
t,a > m

}
∩ E

)
+ Pν,π

({
Tπ
t,a > m

}
∩ Ec

)
.

We will consider the two terms on the right side of the equation above separately.
First, consider an action a∗ ∈ A such that µν

a∗ = µν
∗ , so that a∗ ̸= a. Furthermore, consider an ω ∈ E such that

Tπ
t,a(ω) > m. In order to find a contradiction, suppose that µν

∗ < Uπ,δ
t′−1,a∗(ω) for every t′ ∈ N+ such that n < t′ ≤ t.

Since Tπ
t,a(ω) > m, there is a t′ ∈ N+ such that Cπ

m+1,a(ω) = t′ and n < t′ ≤ t. Therefore,

πt′ (X0(ω), . . . , Xt′−1(ω)) = argmax
a′

Uπ,δ
t′−1,a′(ω) = a.

By Proposition 8.1, since Tπ
t′−1,a(ω) = m and ω ∈ E,

Uπ,δ
t′−1,a(ω) =

1

m

m∑
k=1

XCπ
k,a

(ω) +

√
2 log(1/δ)

m
< µν

∗ < Uπ,δ
t′−1,a∗(ω),

which is a contradiction because Uπ,δ
t′−1,a(ω) = supa′ U

π,δ
t′−1,a′(ω).

Therefore, if ω ∈ E and Tπ
t,a(ω) > m, then µν

∗ ≥ Uπ,δ
t′−1,a∗(ω) for some t′ ∈ N+ such that n < t′ ≤ t. Consequently,

there is an m′ ∈ N+ such that m′ ≤ t and Tπ
t,a∗(ω) ≥ m′ and

µν
∗ ≥ 1

m′

m′∑
k=1

XCπ
k,a∗ (ω) +

√
2 log(1/δ)

m′ .

From the previous statement,

Pν,π
({

Tπ
t,a > m

}
∩ E

)
≤ Pν,π

 ⋃
m′≤t

Tπ
t,a∗ ≥ m′, µν

∗ ≥ 1

m′

m′∑
k=1

XCπ
k,a∗ +

√
2 log(1/δ)

m′


 .

By the union bound, the fact that Tπ
t,a∗(ω) ≥ m′ implies Cπ

m′,a∗(ω) < ∞, and Proposition 7.8,

Pν,π
({

Tπ
t,a > m

}
∩ E

)
≤
∑
m′≤t

Pν,π

Cπ
m′,a∗ < ∞, µν

∗ ≥ 1

m′

m′∑
k=1

XCπ
k,a∗ +

√
2 log(1/δ)

m′

 ≤ tδ.

Second, consider an ω ∈ Ec such that Tπ
t,a(ω) > m. Since Cπ

m,a(ω) < ∞,

Pν,π
({

Tπ
t,a > m

}
∩ Ec

)
≤ Pν,π

({
Cπ

m,a < ∞
}
∩ Ec

)
= Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

XCπ
k,a

+

√
2 log(1/δ)

m
≥ µν

∗

)
.

By subtracting µν
a +

√
2 log(1/δ)/m from both sides of an inequality above and the definition of ∆ν

a,

Pν,π
({

Tπ
t,a > m

}
∩ Ec

)
≤ Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(
XCπ

k,a
− µν

a

)
≥ ∆ν

a −
√

2 log(1/δ)

m

)
.

Since m ≥ 8 log(1/δ)/(∆ν
a)

2, note that
√
2 log(1/δ)/m ≤ ∆ν

a/2 = ∆ν
a −∆ν

a/2 and

∆ν
a −

√
2 log(1/δ)

m
≥ ∆ν

a

2
.
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Therefore, by the previous inequality and Proposition 7.7,

Pν,π
({

Tπ
t,a > m

}
∩ Ec

)
≤ Pν,π

(
Cπ

m,a < ∞,
1

m

m∑
k=1

(
XCπ

k,a
− µν

a

)
≥ ∆ν

a

2

)
≤ e−

m(∆ν
a)2

8 .

By returning to a previous equation,

Pν,π
(
Tπ
t,a > m

)
= Pν,π

({
Tπ
t,a > m

}
∩ E

)
+ Pν,π

({
Tπ
t,a > m

}
∩ Ec

)
≤ tδ + e−

m(∆ν
a)2

8 .

By returning to a previous inequality, since δ = 1/t2,

Eν,π
(
Tπ
t,a

)
≤ tPν,π

(
Tπ
t,a > m

)
+m ≤ te−

m(∆ν
a)2

8 +m+ 1.

Since m ≥ 8 log(1/δ)/(∆ν
a)

2 implies −m(∆ν
a)

2/8 ≤ log δ,

Eν,π
(
Tπ
t,a

)
≤ tδ +m+ 1 =

1

t
+m+ 1 ≤ 2 +m ≤ 3 +

8 log(1/δ)

(∆ν
a)

2
= 3 +

16 log(t)

(∆ν
a)

2
.

For every t > n, since Eν,π
(
Tπ
t,a

)
≤ 3 + 16 log(t)/(∆ν

a)
2 for every a ∈ A such that ∆ν

a > 0,

Rν,π
t =

∑
a|∆ν

a>0

∆ν
aEν,π

(
Tπ
t,a

)
≤

∑
a|∆ν

a>0

∆ν
a

(
3 +

16 log(t)

(∆ν
a)

2

)
=

(
3

n∑
a=1

∆ν
a

)
+

∑
a|∆ν

a>0

16 log(t)

∆ν
a

.

Theorem 8.2. If ν is a 1-subgaussian stochastic bandit and the policy π implements upper confidence bounds
with error δ = 1/t2 for some t ∈ N+, then

Rν,π
t ≤ 8

√
tn log(t) + 3

n∑
a=1

∆ν
a.

Proof. If t ≤ n, then Tπ
t,a ≤ 1 for every a ∈ A, so that Rν,π

t =
∑

a ∆
ν
aEν,π

(
Tπ
t,a

)
≤
∑

a ∆
ν
a.

Let t > n. For every ∆ > 0, since
∑

a Eν,π
(
Tπ
t,a

)
= t,

Rν,π
t =

 ∑
a|∆ν

a<∆

∆ν
aEν,π

(
Tπ
t,a

)+

 ∑
a|∆ν

a≥∆

∆ν
aEν,π

(
Tπ
t,a

) ≤ t∆+
∑

a|∆ν
a≥∆

∆ν
aEν,π

(
Tπ
t,a

)
.

From the proof of Theorem 8.1, recall that Eν,π
(
Tπ
t,a

)
≤ 3 + 16 log(t)/(∆ν

a)
2 if ∆ν

a > 0. Therefore,

Rν,π
t ≤ t∆+

∑
a|∆ν

a≥∆

∆ν
a

(
3 +

16 log(t)

(∆ν
a)

2

)
≤ t∆+

 ∑
a|∆ν

a≥∆

16 log(t)

∆ν
a

+ 3

n∑
a=1

∆ν
a.

Let ∆ =
√

16n log(t)/t, so that ∆ > 0. Since ∆ν
a ≥ ∆ implies 16 log(t)/∆ν

a ≤ 16 log(t)/∆,

Rν,π
t ≤ t∆+

16n log(t)

∆
+ 3

n∑
a=1

∆ν
a =

√
t
√
16n log(t) +

√
t
√

16n log(t) + 3

n∑
a=1

∆ν
a = 8

√
tn log(t) + 3

n∑
a=1

∆ν
a.
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9 Relative entropy
Consider probability measures P and Q on a measurable space (Ω,F).

Proposition 9.1. If λ1 and λ2 are σ-finite measures on (Ω,F), then λ = λ1 + λ2 is a σ-finite measure on (Ω,F).

Proof. Clearly, λ(∅) = λ1(∅) + λ2(∅) = 0. For any sequence (Fn ∈ F | n ∈ N) such that Fn ∩ Fm = ∅ for n ̸= m,

λ

(⋃
n

Fn

)
= λ1

(⋃
n

Fn

)
+ λ2

(⋃
n

Fn

)
=
∑
n

λ1 (Fn) + λ2 (Fn) =
∑
n

λ (Fn) .

Consider a sequence (F 1
n ∈ F | n ∈ N) such that

⋃
n F

1
n = Ω and λ1(F

1
n) < ∞ for every n ∈ N. Analogously,

consider a sequence (F 2
n ∈ F | n ∈ N) such that

⋃
n F

2
n = Ω and λ2(F

2
n) < ∞ for every n ∈ N.

Let Fi,j = F 1
i ∩ F 2

j , so that
⋃

i,j Fi,j = Ω and λ(Fi,j) = λ1(F
1
i ∩ F 2

j ) + λ2(F
1
i ∩ F 2

j ) ≤ λ1(F
1
i ) + λ2(F

2
j ) < ∞.

Because the set {Fi,j | i ∈ N and j ∈ N} is countable, λ is a σ-finite measure on (Ω,F).

Proposition 9.2. There is a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ.

Proof. Let λ : F → [0,∞] be given by λ(F ) = P(F ) + Q(F ). Because P and Q are σ-finite measures on (Ω,F), λ
is a σ-finite measure on (Ω,F). If λ(F ) = 0, then P(F ) = 0 and Q(F ) = 0. Therefore, P ≪ λ and Q ≪ λ.

Proposition 9.3. For every σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ, there is an F-measurable
function p : Ω → [0,∞) such that p = dP/dλ almost everywhere and an F-measurable function q : Ω → [0,∞) such
that q = dQ/dλ almost everywhere.

Proof. This is a direct consequence of the Radon-Nikodym theorem.

Definition 9.1. Consider an F-measurable function p : Ω → [0,∞) and an F-measurable function q : Ω → [0,∞).
The F-measurable function p log (p/q) : Ω → R is defined by(

p log

(
p

q

))
(ω) =

{
p(ω) log(p(ω)/q(ω)), if p(ω)q(ω) > 0,

0, if p(ω)q(ω) = 0.

Definition 9.2. Consider a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ. Let p = dP/dλ almost
everywhere and q = dQ/dλ almost everywhere. The relative entropy D(P,Q) between P and Q under λ is given by

D(P,Q) =

∫
Ω

p log

(
p

q

)
dλ

whenever p log (p/q) is λ-integrable and P(q = 0) = 0. Otherwise, D(P,Q) = ∞.

The relative entropy is also called Kullback-Leibler divergence.

Proposition 9.4. If λ1 is a σ-finite measure on (Ω,F) such that P ≪ λ1 and Q ≪ λ1 and λ2 is a σ-finite measure
on (Ω,F) such that P ≪ λ2 and Q ≪ λ2, then the relative entropy D(P,Q) between P and Q under λ1 is equal to
the relative entropy D(P,Q) between P and Q under λ2.

Proof. Let p1 = dP/dλ1 almost everywhere, q1 = dQ/dλ1 almost everywhere, p2 = dP/dλ2 almost everywhere, and
q2 = dQ/dλ2 almost everywhere. Recall that λ = λ1+λ2 is a σ-finite measure on (Ω,F). Since λ1 ≪ λ and λ2 ≪ λ,
let l1 = dλ1/dλ almost everywhere and l2 = dλ2/dλ almost everywhere. Since P ≪ λ and Q ≪ λ, let p = dP/dλ
almost everywhere and q = dQ/dλ almost everywhere. By the Radon-Nikodym chain rule, p = p1l1 = p2l2 almost
everywhere and q = q1l1 = q2l2 almost everywhere.

We will first show that p1 log (p1/q1) is λ1-integrable if and only if p2 log (p2/q2) is λ2-integrable.
If p1 log (p1/q1) is λ1-integrable or p log (p/q) is λ-integrable,∫

Ω

p1 log

(
p1
q1

)
dλ1 =

∫
Ω

l1

(
p1 log

(
p1
q1

))
dλ =

∫
Ω

p1l1 log

(
p1l1
q1l1

)
dλ =

∫
Ω

p log

(
p

q

)
dλ < ∞.

If p2 log (p2/q2) is λ2-integrable or p log (p/q) is λ-integrable,∫
Ω

p2 log

(
p2
q2

)
dλ2 =

∫
Ω

l2

(
p2 log

(
p2
q2

))
dλ =

∫
Ω

p2l2 log

(
p2l2
q2l2

)
dλ =

∫
Ω

p log

(
p

q

)
dλ < ∞.
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Therefore, p1 log (p1/q1) is λ1-integrable if and only if p2 log (p2/q2) is λ2-integrable, In that case,∫
Ω

p1 log

(
p1
q1

)
dλ1 =

∫
Ω

p log

(
p

q

)
dλ =

∫
Ω

p2 log

(
p2
q2

)
dλ2.

It remains to show that P(q1 = 0) = 0 if and only if P(q2 = 0) = 0, which follows from the fact that

P(q = 0) =

∫
{q1l1=0}

p1l1 dλ =

∫
{q1l1=0,p1l1>0}

p1l1 dλ =

∫
{q1=0,p1l1>0}

p1l1 dλ =

∫
{q1=0}

p1 dλ1 = P(q1 = 0),

P(q = 0) =

∫
{q2l2=0}

p2l2 dλ =

∫
{q2l2=0,p2l2>0}

p2l2 dλ =

∫
{q2=0,p2l2>0}

p2l2 dλ =

∫
{q2=0}

p2 dλ2 = P(q2 = 0).

Proposition 9.5. Consider a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ. Let p = dP/dλ almost
everywhere and q = dQ/dλ almost everywhere. If D(P,Q) < ∞, then λ(p > 0, q = 0) = 0.

Proof. If D(P,Q) < ∞, then P(q = 0) = 0. Since p = dP/dλ almost everywhere,

0 = P(q = 0) =

∫
{q=0}

p dλ =

∫
Ω

I{p>0,q=0}p dλ,

so that λ(I{p>0,q=0}p > 0) = 0. Since {I{p>0,q=0}p > 0} = {p > 0, q = 0}, we have λ(p > 0, q = 0) = 0.

Proposition 9.6. Consider a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ. Let p = dP/dλ almost
everywhere and q = dQ/dλ almost everywhere. If D(P,Q) < ∞, then

∫
Ω
pq dλ > 0 and

∫
{pq>0} q dλ > 0.

Proof. If D(P,Q) < ∞, then P(q = 0) =
∫
{q=0} p dλ = 0. Therefore,

1 = P(Ω) =
∫
Ω

p dλ =

∫
{q=0}

p dλ+

∫
{q>0}

p dλ =

∫
{pq>0}

p dλ,

so that λ(pq > 0) > 0. Consequently,
∫
Ω
pq dλ > 0 and

∫
{pq>0} q dλ > 0.

Proposition 9.7. The relative entropy D(P,Q) between P and Q is non-negative.

Proof. Consider a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ. Let p = dP/dλ almost everywhere and
q = dQ/dλ almost everywhere. It is sufficient to show that the relative entropy D(P,Q) between P and Q under λ
is non-negative when D(P,Q) < ∞. In that case, because p = dP/dλ almost everywhere,

D(P,Q) =

∫
Ω

p log

(
p

q

)
dλ =

∫
{pq>0}

p log

(
p

q

)
dλ =

∫
{pq>0}

− log

(
q

p

)
dP.

Consider the measure space (A,FA,PA) restricted to A = {pq > 0} and recall that

D(P,Q) =

∫
{pq>0}

− log

(
q

p

)
dP =

∫
A

− log

(
q|A

p|A

)
dPA.

Note that the restricted function q|A/p|A : A → (0,∞) is PA-integrable, since∫
A

q|A

p|A
dPA =

∫
{pq>0}

q

p
dP =

∫
{pq>0}

p
q

p
dλ =

∫
{pq>0}

q dλ ≤
∫
Ω

q dλ = Q(Ω) = 1.

By Jensen’s inequality, because the function ϕ : (0,∞) → R given by ϕ(x) = − log(x) is convex,

D(P,Q) ≥ − log

(∫
A

q|A

p|A
dPA

)
≥ − log (1) = 0.

Theorem 9.1 (Bretagnolle-Huber inequality). If F ∈ F , then P(F ) +Q(F c) ≥ e−D(P,Q)/2.
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Proof. It is sufficient to show that if F ∈ F , then P(F ) +Q(F c) ≥ e−D(P,Q)/2 when D(P,Q) < ∞.
Consider a σ-finite measure λ on (Ω,F) such that P ≪ λ and Q ≪ λ. Let p = dP/dλ almost everywhere and

q = dQ/dλ almost everywhere. Since p+ q = min(p, q) + max(p, q),

1 =
1

2
(P(Ω) +Q(Ω)) =

1

2

∫
Ω

(p+ q) dλ =
1

2

∫
Ω

(min(p, q) + max(p, q)) dλ ≥ 1

2

∫
Ω

max(p, q) dλ.

Since min(p, q)max(p, q) = pq and min(p, q) and max(p, q) are λ-integrable, by the Schwarz inequality,(∫
Ω

√
pq dλ

)2

=

(∫
Ω

√
min(p, q)

√
max(p, q) dλ

)2

≤
(∫

Ω

min(p, q) dλ

)(∫
Ω

max(p, q) dλ

)
.

Considering a previous inequality,

1

2

(∫
Ω

√
pq dλ

)2

≤ 1

2

(∫
Ω

min(p, q) dλ

)(∫
Ω

max(p, q) dλ

)
≤
∫
Ω

min(p, q) dλ.

Note that, for every F ∈ F ,

P(F ) +Q(F c) =

∫
F

p dλ+

∫
F c

q dλ ≥
∫
F

min(p, q) dλ+

∫
F c

min(p, q) dλ =

∫
Ω

min(p, q) dλ.

Considering a previous inequality, for every F ∈ F ,

P(F ) +Q(F c) ≥ 1

2

(∫
Ω

√
pq dλ

)2

.

Note that
∫
Ω
pq dλ > 0 implies

∫
Ω

√
pq dλ > 0. Since x2 = e2 log(x) for every x ∈ (0,∞),

P(F ) +Q(F c) ≥ 1

2
e2 log(

∫
Ω

√
pq dλ).

Consider the measure space (A,FA,PA) restricted to A = {pq > 0}.
Note that the restricted function

√
q|A/p|A : A → (0,∞) is PA-integrable, since∫

A

√
q|A

p|A
dPA =

∫
{pq>0}

√
q

p
dP =

∫
{pq>0}

p

√
q

p
dλ =

∫
{pq>0}

√
pq dλ ≤

∫
Ω

√
pq dλ.

By Jensen’s inequality, because the function ϕ : (0,∞) → R given by ϕ(x) = − log(x) is convex,

− log

(∫
Ω

√
pq dλ

)
= − log

(∫
{pq>0}

√
pq dλ

)
= − log

(∫
A

√
q|A

p|A
dPA

)
≤
∫
A

− log

√
q|A

p|A
dPA.

Therefore,

log

(∫
Ω

√
pq dλ

)
≥
∫
{pq>0}

log

√
q

p
dP = −1

2

∫
{pq>0}

p log

(
p

q

)
dλ = −1

2
D(P,Q).

Considering a previous inequality,

P(F ) +Q(F c) ≥ 1

2
e2 log(

∫
Ω

√
pq dλ) ≥ 1

2
e−D(P,Q).
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10 Divergence decomposition
Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a
policy π = (πt | t ∈ N+), and a canonical triple (Ω,F ,Pν,π) for the stochastic bandit ν under the policy π.

Definition 10.1. For every t ∈ N+, the joint law Lν,π
1:t : B(Rt) → [0, 1] is the measure on (Rt,B(Rt)) given by

Lν,π
1:t (Γ) = Pν,π ((X1, . . . , Xt) ∈ Γ) .

Proposition 10.1. There is a σ-finite measure λ on (R,B(R)) such that Pa ≪ λ for every a ∈ A.

Proof. Let λ : B(R) → [0,∞] be given by λ(B) =
∑

a Pa(B). Because Pa is a σ-finite measure on (R,B(R)) for
every a ∈ A, λ is a σ-finite measure on (R,B(R)). If λ(B) = 0, then Pa(B) = 0 for every a ∈ A, so that Pa ≪ λ.

Proposition 10.2. Consider a σ-finite measure λ on (R,B(R)) such that Pa ≪ λ for every a ∈ A. Let pa = dPa/dλ
almost everywhere for every a ∈ A. For every t ∈ N+, consider the function pν,π1:t : Rt → [0,∞) given by

pν,π1:t (x1, . . . , xt) =

t∏
k=1

pπk(x0,...,xk−1)(xk),

where x0 = 0. If λt is the product measure λ× · · · × λ on (Rt,B(Rt)), then pν,π1:t = dLν,π
1:t /dλ

t almost everywhere.

Proof. Consider the case where t = 1. For every B ∈ B(R), since π1(X0) = π1(0),

Lν,π
1:1 (B) = Pν,π (X1 ∈ B) = Eν,π

(
Pπ1(X0)(B)

)
= Pπ1(0)(B) =

∫
B

pπ1(0) dλ =

∫
B

pν,π1:1 dλ1.

In order to employ induction, suppose there is a t−1 ∈ N+ such that pν,π1:t−1 = dLν,π
1:t−1/dλ

t−1 almost everywhere.
Since pν,π1:t : Rt → [0,∞) is B(Rt)-measurable, consider the measure L1:t : B(Rt) → [0,∞] given by

L1:t(Γ) =

∫
Γ

pν,π1:t dλt.

Recall that It = {B1×· · ·×Bt | Bk ∈ B(R) for every k ∈ {1, . . . , t}} is a π-system on Rt such that σ(It) = B(Rt).
Therefore, if we show that L1:t(It) = Lν,π

1:t (It) for every It ∈ It, then L1:t = Lν,π
1:t , so that the proof will be complete.

Consider a set It ∈ It given by It = B1 × · · · ×Bt. Because Lν,π
1:t is the joint law of X1, . . . , Xt,

Lν,π
1:t (It) = Pν,π (X1 ∈ B1, . . . , Xt ∈ Bt) = Eν,π

(
I{X1∈B1,...,Xt−1∈Bt−1}I{Xt∈Bt}

)
.

Let At = πt(X0, . . . , Xt−1). By taking out what is known,

Lν,π
1:t (It) = Eν,π

(
I{X1∈B1,...,Xt−1∈Bt−1}E

ν,π
(
I{Xt∈Bt} | X0, . . . , Xt−1

))
= Eν,π

(
I{X1∈B1,...,Xt−1∈Bt−1}PAt

(Bt)
)
.

Because Lν,π
1:t−1 is the joint law of X1, . . . , Xt−1,

Lν,π
1:t (It) =

∫
Rt−1

IB1×···×Bt−1
(x1:t−1)Pπt(0,x1:t−1)(Bt) Lν,π

1:t−1(dx1:t−1).

By the inductive hypothesis and since pπt(0,x1:t−1) = dPπt(0,x1:t−1)/dλ almost everywhere for every x1:t−1 ∈ Rt−1,

Lν,π
1:t (It) =

∫
Rt−1

IB1×···×Bt−1(x1:t−1)p
ν,π
1:t−1(x1:t−1)

(∫
R
IBt(xt)pπt(0,x1:t−1)(xt) λ(dxt)

)
λt−1(dx1:t−1).

Since pν,π1:t (x1:t) = pν,π1:t−1(x1:t−1)pπt(0,x1:t−1)(xt) for every x1:t ∈ Rt and Fubini’s theorem,

Lν,π
1:t (It) =

∫
Rt−1

∫
R
IB1×···×Bt

(x1:t)p
ν,π
1:t (x1:t) λ(dxt) λ

t−1(dx1:t−1) =

∫
It

pν,π1:t λt = L1:t(It).

Theorem 10.1. If ν′ = (P ′
a | a ∈ A) is a stochastic bandit such that D(Pa, P

′
a) < ∞ for every a ∈ A and t ∈ N+,

D(Lν,π
1:t ,L

ν′,π
1:t ) =

∑
a

D(Pa, P
′
a)Eν,π

(
Tπ
t,a

)
.
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Proof. Consider the σ-finite measure λ : B(R) → [0,∞] on (R,B(R)) given by λ(B) =
∑

a Pa(B) + P ′
a(B). Note

that Pa ≪ λ and P ′
a ≪ λ for every a ∈ A. Let pa = dPa/dλ almost everywhere and p′a = dP ′

a/dλ almost everywhere
for every a ∈ A. For every t ∈ N+, consider the functions pν,π1:t : Rt → [0,∞) and pν

′,π
1:t : Rt → [0,∞) given by

pν,π1:t (x1, . . . , xt) =

t∏
k=1

pπk(x0,...,xk−1)(xk),

pν
′,π

1:t (x1, . . . , xt) =

t∏
k=1

p′πk(x0,...,xk−1)
(xk),

where x0 = 0. Recall that pν,π1:t = dLν,π
1:t /dλ

t almost everywhere and pν
′,π

1:t = dLν′,π
1:t /dλt almost everywhere, where

λt is the product measure λ× · · · × λ on (Rt,B(Rt)). Furthermore, recall that Lν,π
1:t ≪ λt and Lν′,π

1:t ≪ λt.
For every k ∈ N+, let Ak = πk(X0, . . . , Xk−1). For every t ∈ N+, let Dt be given by

Dt =
∑
a

D(Pa, P
′
a)Eν,π

(
Tπ
t,a

)
=

t∑
k=1

Eν,π

(∑
a

I{Ak=a}D(Pa, P
′
a)

)
=

t∑
k=1

Eν,π
(
D(PAk

, P ′
Ak

)
)
< ∞.

Consider the case where t = 1. Since Pa(p
′
a = 0) = 0 for every a ∈ A,

Lν,π
1:1 (p

ν′,π
1:1 = 0) = Lν,π

1:1 (p
′
π1(0)

= 0) = Pπ1(0)(p
′
π1(0)

= 0) = 0.

Since A1 = π1(X0) = π1(0),

D1 = Eν,π
(
D(PA1 , P

′
A1

)
)
= D

(
Pπ1(0), P

′
π1(0)

)
=

∫
R
pπ1(0) log

(
pπ1(0)

p′π1(0)

)
dλ =

∫
R
pν,π1:1 log

(
pν,π1:1

pν
′,π

1:1

)
dλ1,

so that pν,π1:1 log
(
pν,π1:1 /p

ν′,π
1:1

)
is λ1-integrable and D1 = D(Lν,π

1:1 ,L
ν′,π
1:1 ).

In order to employ induction, suppose that Dt−1 = D(Lν,π
1:t−1,L

ν′,π
1:t−1) for some t− 1 ∈ N+.

For every x1:t ∈ Rt, if pν,π1:t (x1:t) > 0 and pν
′,π

1:t (x1:t) = 0, then pν,π1:t−1(x1:t−1) > 0 and there is an action at ∈ A
such that pat

(xt) > 0. Furthermore, pν
′,π

1:t−1(x1:t−1) = 0 or pν
′,π

1:t−1(x1:t−1) > 0 and p′at
(xt) = 0. Therefore,{

pν,π1:t > 0, pν
′,π

1:t = 0
}
⊆
({

pν,π1:t−1 > 0, pν
′,π

1:t−1 = 0
}
× R

)
∪

(⋃
at

{
pν,π1:t−1 > 0, pν

′,π
1:t−1 > 0

}
×
{
pat > 0, p′at

= 0
})

.

Let lt = λt
(
pν,π1:t > 0, pν

′,π
1:t = 0

)
. By an union bound,

lt ≤ λt
({

pν,π1:t−1 > 0, pν
′,π

1:t−1 = 0
}
× R

)
+
∑
at

λt
({

pν,π1:t−1 > 0, pν
′,π

1:t−1 > 0
}
×
{
pat

> 0, p′at
= 0
})

.

Since λt is the product measure λ× · · · × λ on (Rt,B(Rt)),

lt ≤ λt−1
(
pν,π1:t−1 > 0, pν

′,π
1:t−1 = 0

)
λ(R) +

∑
at

λt−1
(
pν,π1:t−1 > 0, pν

′,π
1:t−1 > 0

)
λ
(
pat > 0, p′at

= 0
)
.

Since Dt−1 = D(Lν,π
1:t−1,L

ν′,π
1:t−1) < ∞ by the inductive hypothesis, note that λt−1

(
pν,π1:t−1 > 0, pν

′,π
1:t−1 = 0

)
= 0.

Since D(Pat , P
′
at
) < ∞, recall that λ

(
pat > 0, p′at

= 0
)
= 0. Therefore, λt

(
pν,π1:t > 0, pν

′,π
1:t = 0

)
= lt = 0.

Since Lν,π
1:t ≪ λt, note that Lν,π

1:t (p
ν,π
1:t > 0, pν

′,π
1:t = 0) = 0. Therefore, completing this step,

0 = Lν,π
1:t (p

ν,π
1:t > 0, pν

′,π
1:t = 0) =

∫
{pν,π

1:t >0,pν′,π
1:t =0}

pν,π1:t dλt =

∫
{pν′,π

1:t =0}
pν,π1:t dλt = Lν,π

1:t (p
ν′,π
1:t = 0).

It remains to show that pν,π1:t log
(
pν,π1:t /p

ν′,π
1:t

)
is λt-integrable and that

Dt =

∫
Rt

pν,π1:t log

(
pν,π1:t

pν
′,π

1:t

)
dλt.
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Since Lν,π
1:t−1 is the joint law of X1, . . . , Xt−1,

Dt = Dt−1 + Eν,π
(
D(PAt , P

′
At
)
)
= Dt−1 +

∫
Rt−1

D(Pπt(0,x1:t−1), P
′
πt(0,x1:t−1)

) Lν,π
1:t−1(dx1:t−1).

Since D(Pa, P
′
a) < ∞ for every a ∈ A,

Dt = Dt−1 +

∫
Rt−1

∫
R
pπt(0,x1:t−1)(xt) log

(
pπt(0,x1:t−1)(xt)

p′πt(0,x1:t−1)
(xt)

)
λ(dxt) Lν,π

1:t−1(dx1:t−1).

Since pν,π1:t−1 = dLν,π
1:t−1/dλ

t−1 almost everywhere and pν,π1:t (x1:t) = pν,π1:t−1(x1:t−1)pπt(0,x1:t−1)(xt),

Dt = Dt−1 +

∫
Rt−1

∫
R
pν,π1:t (x1:t) log

(
pπt(0,x1:t−1)(xt)

p′πt(0,x1:t−1)
(xt)

)
λ(dxt) λ

t−1(dx1:t−1).

Since the function under consideration is λt-integrable, by Fubini’s theorem,

Dt = Dt−1 +

∫
Rt

pν,π1:t (x1:t) log

(
pπt(0,x1:t−1)(xt)

p′πt(0,x1:t−1)
(xt)

)
λt(dx1:t).

Since pν,π1:t = dLν,π
1:t /dλ

t almost everywhere and Lν,π
1:t is the joint law of X1, . . . , Xt,

Dt = Dt−1 +

∫
Rt

log

(
pπt(0,x1:t−1)(xt)

p′πt(0,x1:t−1)
(xt)

)
Lν,π
1:t (dx1:t) = Dt−1 + Eν,π

(
log

(
pAt

(Xt)

p′At
(Xt)

))
.

By the inductive hypothesis, since pν,π1:t−1 = dLν,π
1:t−1/dλ

t−1 almost everywhere,

Dt−1 =

∫
Rt−1

log

(
pν,π1:t−1(x1:t−1)

pν
′,π

1:t−1(x1:t−1)

)
Lν,π
1:t−1(dx1:t−1) = Eν,π

(
log

(
pν,π1:t−1(X1, . . . , Xt−1)

pν
′,π

1:t−1(X1, . . . , Xt−1)

))
.

By the definition of the functions pν,π1:t−1 and pν
′,π

1:t−1,

Dt−1 = Eν,π

(
log

(
t−1∏
k=1

pAk
(Xk)

p′Ak
(Xk)

))
=

t−1∑
k=1

Eν,π

(
log

(
pAk

(Xk)

p′Ak
(Xk)

))
.

By combining the equation above with a previous equation,

Dt =

t∑
k=1

Eν,π

(
log

(
pAk

(Xk)

p′Ak
(Xk)

))
= Eν,π

(
log

(
t∏

k=1

pAk
(Xk)

p′Ak
(Xk)

))
= Eν,π

(
log

(
pν,π1:t (X1, . . . , Xt)

pν
′,π

1:t (X1, . . . , Xt)

))
.

Because Lν,π
1:t is the joint law of X1, . . . , Xt and pν,π1:t = dLν,π

1:t /dλ
t almost everywhere,

Dt =

∫
Rt

log

(
pν,π1:t (x1:t)

pν
′,π

1:t (x1:t)

)
Lν,π
1:t (dx1:t) =

∫
Rt

pν,π1:t (x1:t) log

(
pν,π1:t (x1:t)

pν
′,π

1:t (x1:t)

)
λt(dx1:t),

which implies that pν,π1:t log
(
pν,π1:t /p

ν′,π
1:t

)
is λt-integrable and that Dt = D(Lν,π

1:t ,L
ν′,π
1:t ).
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11 Relative lower bounds
Consider a number of actions n ∈ N+, a set of actions A = {1, . . . , n}, a stochastic bandit ν = (Pa | a ∈ A), a
policy π = (πt | t ∈ N+), and a canonical triple (Ω,F ,Pν,π) for the stochastic bandit ν under the policy π.

Theorem 11.1. Suppose that ∆ν
a′ > 0 for some action a′ ∈ A and consider a stochastic bandit ν′ = (P ′

a | a ∈ A)

such that P ′
a = Pa for every a ̸= a′. Furthermore, suppose that µν′

∗ = µν′

a′ > µν
∗ and that D(Pa′ , P ′

a′) ∈ (0,∞). In
that case, for every time step t > 1,

Rν′,π
t ≥ t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Pa′ ,P ′
a′ )Eν,π(Tπ

t,a′) −Rν,π
t .

Proof. Consider an action a′ ∈ A such that ∆ν
a′ > 0 and let t > 1. By Theorem 4.2 and Markov’s inequality,

Rν,π
t =

∑
a

∆ν
aEν,π

(
Tπ
t,a

)
≥ ∆ν

a′Eν,π
(
Tπ
t,a′

)
≥ t

2
∆ν

a′Pν,π

(
Tπ
t,a′ ≥

t

2

)
.

For every a ̸= a′, note that ∆ν′

a = µν′

∗ − µν′

a = µν′

∗ − µν
a ≥ µν′

∗ − µν
∗ . Since ∆ν′

a′ = µν′

∗ − µν′

a′ = 0, by Theorem 4.2,

Rν′,π
t =

∑
a̸=a′

∆ν′

a Eν′,π
(
Tπ
t,a

)
≥ (µν′

∗ − µν
∗)
(
t− Eν′,π

(
Tπ
t,a′

))
= (µν′

∗ − µν
∗)Eν′,π

(
t− Tπ

t,a′

)
,

where we also used the fact that t =
∑

a Eν′,π
(
Tπ
t,a

)
= Eν′,π

(
Tπ
t,a′

)
+
∑

a ̸=a′ Eν′,π
(
Tπ
t,a

)
.

By Markov’s inequality and since Pν′,π
(
Tπ
t,a′ ≤ t/2

)
≥ Pν′,π

(
Tπ
t,a′ < t/2

)
,

Rν′,π
t ≥ t

2
(µν′

∗ − µν
∗)Pν′,π

(
t− Tπ

t,a′ ≥
t

2

)
=

t

2
(µν′

∗ − µν
∗)Pν′,π

(
Tπ
t,a′ ≤

t

2

)
≥ t

2
(µν′

∗ − µν
∗)Pν′,π

(
Tπ
t,a′ <

t

2

)
.

By combining the previous inequalities,

Rν,π
t +Rν′,π

t ≥ t

2
∆ν

a′Pν,π

(
Tπ
t,a′ ≥

t

2

)
+

t

2
(µν′

∗ − µν
∗)Pν′,π

(
Tπ
t,a′ <

t

2

)
.

Since ab+ cd ≥ min(a, c)(b+ d) for every a ∈ R, b ≥ 0, c ∈ R, and d ≥ 0,

Rν,π
t +Rν′,π

t ≥ t

2
min(∆ν

a′ , µν′

∗ − µν
∗)

(
Pν,π

(
Tπ
t,a′ ≥

t

2

)
+ Pν′,π

(
Tπ
t,a′ <

t

2

))
.

Because the random variable Tπ
t,a′ is σ(X1, . . . , Xt−1)-measurable, recall that there is a B(Rt−1)/B(R)-measurable

function fπ
t−1 : Rt−1 → R such that Tπ

t,a′(ω) = fπ
t−1(X1(ω), . . . , Xt−1(ω)) for every ω ∈ Ω. If Lν,π

1:t−1 denotes the
joint law of X1, . . . , Xt−1 under Pν,π and Lν′,π

1:t−1 denotes the joint law of X1, . . . , Xt−1 under Pν′,π,

Rν,π
t +Rν′,π

t ≥ t

2
min(∆ν

a′ , µν′

∗ − µν
∗)

(
Lν,π
1:t−1

(
fπ
t−1 ≥ t

2

)
+ Lν′,π

1:t−1

(
fπ
t−1 <

t

2

))
.

By Theorem 9.1, since Lν,π
1:t−1 and Lν′,π

1:t−1 are probability measures on the measurable space (Rt−1,B(Rt−1)),

Rν,π
t +Rν′,π

t ≥ t

2
min(∆ν

a′ , µν′

∗ − µν
∗)

e−D(Lν,π
1:t−1,L

ν′,π
1:t−1)

2
=

t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Lν,π
1:t−1,L

ν′,π
1:t−1).

By Theorem 10.1, since D(Pa, P
′
a) = 0 for every a ̸= a′ and D(Pa′ , P ′

a′) < ∞,

D(Lν,π
1:t−1,L

ν′,π
1:t−1) =

∑
a

D(Pa, P
′
a)Eν,π

(
Tπ
t−1,a

)
= D(Pa′ , P ′

a′)Eν,π
(
Tπ
t−1,a′

)
≤ D(Pa′ , P ′

a′)Eν,π
(
Tπ
t,a′

)
.

By returning to a previous inequality,

Rν,π
t +Rν′,π

t ≥ t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Pa′ ,P ′
a′ )Eν,π(Tπ

t,a′).
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12 Minimax lower bounds
Consider a number of actions n ∈ N+ and an environment class E for the set of actions A = {1, . . . , n}. Let
(Ω,F ,Pν,π) denote a canonical triple for a stochastic bandit ν ∈ E and a policy π = (πt : Rt → A | t ∈ N+).

Definition 12.1. The worst-case regret RE,π
t of policy π on the class E after t ∈ N+ time steps is given by

RE,π
t = sup

ν∈E
Rν,π

t .

Definition 12.2. The minimax regret RE,∗
t of the environment class E after t ∈ N+ time steps is given by

RE,∗
t = inf

π
RE,π

t .

Definition 12.3. A policy π is minimax optimal on the environment class E after t ∈ N+ time steps if RE,π
t = RE,∗

t .

Definition 12.4. The Gaussian measure P : B(R) → [0, 1] with mean µ ∈ R and variance σ2 > 0 is given by

P (B) =
1√
2πσ2

∫
B

e−
(x−µ)2

2σ2 Leb(dx),

where π denotes the circle constant (as opposed to a policy), so that P is a probability measure on (R,B(R)).
Definition 12.5. A stochastic bandit ν = (Pa | a ∈ A) is a Gaussian bandit with variance σ2 > 0 if Pa is the
Gaussian measure with mean µν

a and variance σ2 for every a ∈ A.

Definition 12.6. Let En,σ2

N denote the set of Gaussian bandits with variance σ2 for the set of actions A = {1, . . . , n}.

Theorem 12.1. The minimax regret R
En,1
N ,∗

t of the environment class En,1
N after t > 1 time steps is at least

R
En,1
N ,∗

t ≥ 1

27

√
(n− 1)t.

Proof. The claim is trivial if n = 1. Therefore, suppose that n > 1. For some t > 1, let ∆ =
√
(n− 1)/4t > 0 and

consider an arbitrary policy π for the set of actions A = {1, . . . , n}.
Let ν = (Pa | a ∈ A) denote a Gaussian bandit with variance 1 such that µν

1 = ∆ and µν
a = 0 for every a > 1.

Note that ∆ν
1 = 0 and ∆ν

a = µν
∗ − µν

a = ∆ for every a > 1.
Let a′ ∈ A denote an action such that a′ > 1 and Eν,π

(
Tπ
t,a′

)
= mina>1 Eν,π

(
Tπ
t,a

)
. Let ν′ = (P ′

a | a ∈ A) denote
a Gaussian bandit with variance 1 such that µν′

a = µν
a for every a ̸= a′ and µν′

a′ = 2∆. Note that ∆ν′

1 = ∆, ∆ν′

a′ = 0,
and ∆ν′

a = 2∆ for every a > 1 such that a ̸= a′.
For every a ∈ A, Pa and P ′

a are Gaussian measures with variance 1, so that D(Pa, P
′
a) = (µν

a−µν′

a )2/2. Therefore,
by Theorem 11.1,

Rν,π
t +Rν′,π

t ≥ t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Pa′ ,P ′
a′ )Eν,π(Tπ

t,a′) =
t

4
∆e−2∆2Eν,π(Tπ

t,a′).

Since t =
∑

a Eν,π
(
Tπ
t,a

)
and Eν,π

(
Tπ
t,a

)
≥ Eν,π

(
Tπ
t,a′

)
for every a > 1 such that a ̸= a′,

t = Eν,π
(
Tπ
t,1

)
+ Eν,π

(
Tπ
t,a′

)
+

∑
a>1|a ̸=a′

Eν,π
(
Tπ
t,a

)
≥ Eν,π

(
Tπ
t,a′

)
+ (n− 2)Eν,π

(
Tπ
t,a′

)
= (n− 1)Eν,π

(
Tπ
t,a′

)
,

so that Eν,π
(
Tπ
t,a′

)
≤ t/(n− 1). By returning to a previous inequality,

Rν,π
t +Rν′,π

t ≥ t

4
∆e−2∆2Eν,π(Tπ

t,a′) ≥ t

4
∆e−

2∆2t
n−1 .

Since max(x, y) ≥ (x+ y)/2 for every x ∈ R and y ∈ R and ∆ =
√
(n− 1)/4t,

max(Rν,π
t , Rν′,π

t ) ≥ Rν,π
t +Rν′,π

t

2
≥ t

8
∆e−

2∆2t
n−1 =

e−
1
2

16

√
(n− 1)t ≥ 1

27

√
(n− 1)t.

In summary, we have shown that for every policy π, number of actions n > 1, and time step t > 1, it is possible
to find Gaussian bandits ν and ν′ with variance 1 such that either Rν,π

t ≥
√

(n− 1)t/27 or Rν′,π
t ≥

√
(n− 1)t/27.

Therefore, for every policy π, number of actions n ∈ N+, and time step t > 1, we know that REn,1
N ,π

t ≥
√
(n− 1)t/27.

Consequently, REn,1
N ,∗

t = infπ R
En,1
N ,π

t ≥
√
(n− 1)t/27.
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13 Asymptotic lower bounds
Consider a number of actions n ∈ N+ and an environment class E for the set of actions A = {1, . . . , n}. Let
(Ω,F ,Pν,π) denote a canonical triple for a stochastic bandit ν ∈ E and a policy π = (πt : Rt → A | t ∈ N+).

Definition 13.1. A policy π = (πt : Rt → A | t ∈ N+) is consistent over the environment class E if

lim
t→∞

Rν,π
t

tp
= 0

for every stochastic bandit ν ∈ E and constant p > 0.

Definition 13.2. The environment class E is unstructured if E =
∏

a Ma, where Ma is a set of probability measures
on the measurable space (R,B(R)) for every a ∈ A.

Definition 13.3. If E =
∏

a Ma is an unstructured environment class and l ∈ R, then the set Ml
a is given by

Ml
a =

{
Pa ∈ Ma |

∫
R
x Pa(dx) > l

}
.

Definition 13.4. An unstructured environment class E =
∏

a Ma is well-unstructured if:

• For every a ∈ A, if Pa ∈ Ma and P ′
a ∈ Ma are measures such that Pa ̸= P ′

a, then D(Pa, P
′
a) ∈ (0,∞).

• For every stochastic bandit ν ∈ E and action a ∈ A, if ∆ν
a > 0, then Mµν

∗
a ̸= ∅.

Proposition 13.1. The environment class En,1
N is well-unstructured.

Proof. For every a ∈ A, let Ma denote the set of Gaussian measures with variance 1, so that En,1
N =

∏
a Ma. For

every a ∈ A, recall that if Pa ∈ Ma is a Gaussian measure with mean µ ∈ R and variance 1 and P ′
a ∈ Ma is a

Gaussian measure with mean µ′ ∈ R and variance 1, then D(Pa, P
′
a) = (µ − µ′)2/2. Therefore, if Pa ̸= P ′

a, then
D(Pa, P

′
a) ∈ (0,∞). Furthermore, Mµ

a ̸= ∅ for every a ∈ A and µ ∈ R.

Theorem 13.1. If E =
∏

a Ma is a well-unstructured environment class and a policy π is consistent over E , then

lim inf
t→∞

Rν,π
t

log(t)
≥

∑
a|∆ν

a>0

∆ν
a

inf
P ′

a∈Mµν
∗

a
D(Pa, P ′

a)

for every stochastic bandit ν = (Pa ∈ Ma | a ∈ A).

Proof. Consider a policy π that is consistent over E and a stochastic bandit ν = (Pa ∈ Ma | a ∈ A). The claim is
trivial if ∆ν

a = 0 for every a ∈ A, so suppose that n > 1 and ∆ν
a′ > 0 for at least one action a′ ∈ A.

For any action a′ ∈ A such that ∆ν
a′ > 0, consider a stochastic bandit ν′ = (P ′

a ∈ Ma | a ∈ A) such that
P ′
a = Pa for every a ̸= a′ and P ′

a′ ∈ Mµν
∗

a′ , so that µν′

∗ = µν′

a′ > µν
∗ and D(Pa′ , P ′

a′) ∈ (0,∞).
By Theorem 11.1, for every t > 1,

Rν,π
t +Rν′,π

t ≥ t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Pa′ ,P ′
a′ )Eν,π(Tπ

t,a′).

Because the right side of the inequality above is positive,

log
(
Rν,π

t +Rν′,π
t

)
≥ log (t)− log (4) + log

(
min(∆ν

a′ , µν′

∗ − µν
∗)
)
−D(Pa′ , P ′

a′)Eν,π
(
Tπ
t,a′

)
.

By rearranging and dividing both sides of the inequality above by log (t),

D(Pa′ , P ′
a′)

Eν,π
(
Tπ
t,a′

)
log (t)

≥
log (t)− log (4) + log

(
min(∆ν

a′ , µν′

∗ − µν
∗)
)
− log

(
Rν,π

t +Rν′,π
t

)
log (t)

.

By taking the limit inferior when t → ∞ and the superadditivity of the limit inferior,

D(Pa′ , P ′
a′) lim inf

t→∞

Eν,π
(
Tπ
t,a′

)
log(t)

≥ 1 + lim inf
t→∞

−
log
(
Rν,π

t +Rν′,π
t

)
log(t)

.
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By the relationship between the limit inferior and the limit superior,

D(Pa′ , P ′
a′) lim inf

t→∞

Eν,π
(
Tπ
t,a′

)
log(t)

≥ 1− lim sup
t→∞

log
(
Rν,π

t +Rν′,π
t

)
log(t)

.

For every p > 0, because the policy π is consistent over the environment class E ,

0 = lim
t→∞

Rν,π
t

tp
+ lim

t→∞

Rν′,π
t

tp
= lim

t→∞

Rν,π
t +Rν′,π

t

tp
.

Therefore, for every p > 0 and ϵ > 0 there is a T > 1 such that t ≥ T implies (Rν,π
t + Rν′,π

t )/tp < ϵ. Since
Rν,π

t +Rν′,π
t > 0 by a previous inequality, by rearranging and taking the logarithm,

log
(
Rν,π

t +Rν′,π
t

)
≤ log (ϵtp) = log (ϵ) + p log (t) .

By dividing both sides by log(t), for every p > 0 and ϵ > 0 there is a T > 1 such that t ≥ T implies

log
(
Rν,π

t +Rν′,π
t

)
log (t)

≤ log (ϵ)

log (t)
+ p.

Therefore, lim supt→∞ log
(
Rν,π

t +Rν′,π
t

)
/ log(t) ≤ p for every p > 0. By returning to a previous inequality,

D(Pa′ , P ′
a′) lim inf

t→∞

Eν,π
(
Tπ
t,a′

)
log(t)

≥ 1− lim sup
t→∞

log
(
Rν,π

t +Rν′,π
t

)
log(t)

≥ 1.

In summary, for every action a ∈ A such that ∆ν
a > 0 and P ′

a ∈ Mµν
∗

a ,

D(Pa, P
′
a) lim inf

t→∞

Eν,π
(
Tπ
t,a

)
log(t)

≥ 1.

For every action a ∈ A such that ∆ν
a > 0, unless the expression on the left side below is 0 · ∞,(

inf
P ′

a∈Mµν
∗

a

D(Pa, P
′
a)

)
lim inf
t→∞

Eν,π
(
Tπ
t,a

)
log(t)

= inf
P ′

a∈Mµν
∗

a

(
D(Pa, P

′
a) lim inf

t→∞

Eν,π
(
Tπ
t,a

)
log(t)

)
≥ 1.

Therefore, for every action a ∈ A such that ∆ν
a > 0,

lim inf
t→∞

Eν,π
(
Tπ
t,a

)
log(t)

≥ 1

inf
P ′

a∈Mµν
∗

a
D(Pa, P ′

a)
.

By Theorem 4.2 and the superadditivity of the limit inferior,

lim inf
t→∞

Rν,π
t

log(t)
= lim inf

t→∞

∑
a|∆ν

a>0

∆ν
a

Eν,π
(
Tπ
t,a

)
log(t)

≥
∑

a|∆ν
a>0

∆ν
a lim inf

t→∞

Eν,π
(
Tπ
t,a

)
log(t)

≥
∑

a|∆ν
a>0

∆ν
a

inf
P ′

a∈Mµν
∗

a
D(Pa, P ′

a)
.

Proposition 13.2. If a policy π is consistent over the environment class En,1
N and ν ∈ En,1

N , then

lim inf
t→∞

Rν,π
t

log(t)
≥ 2

∑
a|∆ν

a>0

1

∆ν
a

.

Proof. For every a ∈ A, let Ma denote the set of Gaussian measures with variance 1, so that En,1
N =

∏
a Ma. For

every stochastic bandit ν = (Pa ∈ Ma | a ∈ A) and action a ∈ A,

inf
P ′

a∈Mµν
∗

a

D(Pa, P
′
a) = inf

µ′>µν
∗

(µν
a − µ′)2

2
=

(µν
a − µν

∗)
2

2
=

(−∆ν
a)

2

2
=

(∆ν
a)

2

2
.
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By Theorem 13.1, since the environment class En,1
N is well-unstructured,

lim inf
t→∞

Rν,π
t

log(t)
≥

∑
a|∆ν

a>0

∆ν
a

inf
P ′

a∈Mµν
∗

a
D(Pa, P ′

a)
= 2

∑
a|∆ν

a>0

1

∆ν
a

.

Definition 13.5. A policy π is asymptotically optimal on a well-unstructured environment class E =
∏

a Ma if

lim
t→∞

Rν,π
t

log(t)
=

∑
a|∆ν

a>0

∆ν
a

inf
P ′

a∈Mµν
∗

a
D(Pa, P ′

a)

for every stochastic bandit ν = (Pa ∈ Ma | a ∈ A).
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14 Finite-time lower bounds
Consider a number of actions n ∈ N+ and the environment class En,1

N for the set of actions A = {1, . . . , n}. Let
(Ω,F ,Pν,π) denote a canonical triple for a stochastic bandit ν ∈ En,1

N and a policy π = (πt : Rt → A | t ∈ N+).

Definition 14.1. For every stochastic bandit ν ∈ En,1
N , the environment class Eν is given by

Eν = {ν′ ∈ En,1
N | µν′

a ∈ [µν
a, µ

ν
a + 2∆ν

a] for every a ∈ A}.

Theorem 14.1. Consider a stochastic bandit ν ∈ En,1
N . If there is a policy π = (πt : Rt → A | t ∈ N+), a time step

t > 1, a constant C > 0, and a constant p ∈ (0, 1) such that Rν′,π
t ≤ Ctp for every ν′ ∈ Eν , then, for every ϵ ∈ (0, 1],

Rν,π
t ≥ 2

(1 + ϵ)2

∑
a|∆ν

a>0

max

(
(1− p) log(t) + log(ϵ∆ν

a/8C)

∆ν
a

, 0

)
.

Proof. Consider a stochastic bandit ν = (Pa | a ∈ A) such that ν ∈ En,1
N and let ϵ ∈ (0, 1]. The claim is trivial if

∆ν
a = 0 for every a ∈ A, so suppose that n > 1 and ∆ν

a′ > 0 for at least one action a′ ∈ A.
Suppose that there is a policy π = (πt : Rt → A | t ∈ N+), a time step t > 1, a constant C > 0, and a constant

p ∈ (0, 1) such that Rν′,π
t ≤ Ctp for every ν′ ∈ Eν .

For any action a′ ∈ A such that ∆ν
a′ > 0, consider a stochastic bandit ν′ = (P ′

a | a ∈ A) such that P ′
a = Pa

for every a ̸= a′. Let P ′
a′ be a Gaussian measure with mean µν′

a′ = µν
a′ + ∆ν

a′(1 + ϵ) and variance 1. Note that
µν′

a′ > µν
a′ +∆ν

a′ = µν
∗ and µν′

a′ ≤ µν
a′ + 2∆ν

a′ , so that ν′ ∈ Eν and µν′

∗ = µν′

a′ > µν
∗ .

By Theorem 11.1, since D(Pa′ , P ′
a′) = (µν

a′ − µν′

a′)2/2 = (∆ν
a′)2(1 + ϵ)2/2,

Rν,π
t +Rν′,π

t ≥ t

4
min(∆ν

a′ , µν′

∗ − µν
∗)e

−D(Pa′ ,P ′
a′ )Eν,π(Tπ

t,a′) =
t

4
ϵ∆ν

a′e
− 1

2 (∆
ν
a′ )

2(1+ϵ)2Eν,π(Tπ
t,a′),

where we also used the fact that min(∆ν
a′ , µν′

∗ − µν
∗) = min(∆ν

a′ , µν
a′ +∆ν

a′ + ϵ∆ν
a′ − µν

∗) = min(∆ν
a′ , ϵ∆ν

a′) = ϵ∆ν
a′ .

Since ν ∈ Eν and ν′ ∈ Eν ,

2Ctp ≥ Rν,π
t +Rν′,π

t ≥ t

4
ϵ∆ν

a′e
− 1

2 (∆
ν
a′ )

2(1+ϵ)2Eν,π(Tπ
t,a′).

Since the right side of the inequality above is positive, by taking the logarithm,

log (2C) + p log (t) ≥ log(t) + log (ϵ∆ν
a′/4)−

1

2
(∆ν

a′)2(1 + ϵ)2Eν,π
(
Tπ
t,a′

)
.

By rearranging terms, since (∆ν
a′)2(1 + ϵ)2 > 0,

Eν,π
(
Tπ
t,a′

)
≥ 2

(∆ν
a′)2(1 + ϵ)2

((1− p) log (t) + log (ϵ∆ν
a′/8C)) .

In summary, for every a ∈ A such that ∆ν
a > 0,

Eν,π
(
Tπ
t,a

)
≥ max

(
2

(∆ν
a)

2(1 + ϵ)2
((1− p) log(t) + log(ϵ∆ν

a/8C)) , 0

)
.

By Theorem 4.2,

Rν,π
t =

∑
a|∆ν

a>0

∆ν
aEν,π

(
Tπ
t,a

)
≥

∑
a|∆ν

a>0

∆ν
a max

(
2

(∆ν
a)

2(1 + ϵ)2
((1− p) log(t) + log(ϵ∆ν

a/8C)) , 0

)
.

By rearranging terms,

Rν,π
t ≥ 2

(1 + ϵ)2

∑
a|∆ν

a>0

max

(
(1− p) log(t) + log(ϵ∆ν

a/8C)

∆ν
a

, 0

)
.
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